
Theo Rekatsinas | thodrek@cs.wisc.edu

Marius
Machine Learning over Billion-Edge Graphs 10x Faster and 5x Cheaper



The team
Student Leads

Jason 

Mohoney

Roger 

Waleffe

Prof. Theo 
Rekatsinas

Prof. Shivaram 
Venkataraman

Project Leads



The universality of semantic structure

Scientific graphs Knowledge Graphs Server Logs

Graphs are universal representations of rich semantics about 
entities (nodes) and their relationships (edges)



Harnessing the power of structure

Reasoning requires operating over relational structured data

Node classification Link prediction Related-entities prediction

?



Modern Machine Learning over graphs

Learned vector representations of nodes and edges are key to deep graph learning

Multiple node and edge types

Nodes

d-dimensional vectors

Edge 

Types

k-dimensional vectors

Encoder Decoder

Node 
Classes

Edge Type (Node1, Node2) 
= Yes or No?




Graph learning is memory- and IO-bound

Graphs introduce irregular access patterns



Graph learning is memory- and IO-bound

Example: Learning Graph Embeddings

Training Process

// E ordered randomly 
for (s, r, d) in E: 

    // compute loss of model for an edge 
    computeLoss(s, r, d) 

// apply updates to embeddings of edge 
    update(s, r, d)    

Training requires iterating over all edges and 
retrieving/updating embedding vectors



Graph learning is memory- and IO-bound
Example: Learning Graph Embeddings

Training Process

// E ordered randomly 
for (s, r, d) in E: 

    // compute loss of model for an edge 
    computeLoss(s, r, d) 

// apply updates to embeddings of edge 
    update(s, r, d)    

Training requires iterating over all edges and 
retrieving/updating embedding vectors

Madison

Capital of

Wisconsin

Born in John 
Bardeen

Borders
Illinois

Faculty at
UIUC

Awarded

Nobel 
Prize in 
Physics 
(1956)

Nobel 
Prize in 
Physics 
(1972)

Awarded

Located in

Node embeddings Table

Edge-type embeddings Table

0 d

0 d

|V |

|R |

Read

Read



Graph learning is memory- and IO-bound
Example: Learning Graph Embeddings

Training Process

// E ordered randomly 
for (s, r, d) in E: 

    // compute loss of model for an edge 
    computeLoss(s, r, d) 

// apply updates to embeddings of edge 
    update(s, r, d)    

Training requires iterating over all edges and 
retrieving/updating embedding vectors

Madison

Capital of

Wisconsin

Born in John 
Bardeen

Borders
Illinois

Faculty at
UIUC

Awarded

Nobel 
Prize in 
Physics 
(1956)

Nobel 
Prize in 
Physics 
(1972)

Awarded

Located in

Node embeddings Table

Edge-type embeddings Table

0 d

0 d

|V |

|R |

Write

Write



Graph learning is memory- and IO-bound

Embedding tables do not fit in GPU memory

AWS P3.2xLarge instance: 

- 16 GB GPU Memory


- 64 GB CPU Memory

Freebase86m: 

- 338 million edges, 86 million nodes, 15,000 edge types


- Size of node embedding table for d = 400: 

86 million x 400 x 4 bytes = 138 GB



Moving embeddings to compute

1. Store embeddings in CPU memory and transfer to GPU(s)

- Bottlenecked by transfer overheads

- Limited scalability

DGL

PyTorch Big-Graph (PBG)

3.  Distribute embeddings across multiple machines

 - Bottlenecked by transfer overheads

 - Expensive

2.  Partition node embeddings and store on disk

 - Limited by disk throughput

PBG & DGL 



Moving embeddings to compute

The key bottleneck when training graph learning models is data movement



Marius: Scalable graph learning

Pipelining and a novel data replacement policy allow Marius to maximize resource 
utilization of the entire memory hierarchy (including disk, CPU, and GPU memory)


Achieves graph learning over billion edge graphs in a single machine

Learning Massive Graph Embeddings on a Single Machine, OSDI’2021

Find more at: marius-project.org



Marius: Scalable graph learning

Marius can be 10x faster than competing methods in a single box

*MRR: mean reciprocal 
rank (higher is better)

Measuring time-to-reconstruction-accuracy for

Dot-Product graph embeddings over the Twitter graph 

(41.6M nodes and 1.5B edges)



Marius: Scalable graph learning

Marius can be 5x cheaper than competing methods; single-box 
(1GPU) Marius has comparable runtime with multi-GPU solutions

Per-epoch runtime and monetary cost ($) for embedding the Freebase Knowledge Graph 

(86M nodes and 338M edges)



Open-source Marius

Compatible


Released at:  
marius-project.org




Using Marius

Config-based development
• No-code paradigm: running Marius only 

requires a simple configuration file 

• Customize parameters, defaults provided 
if not specified 

• Easy to run from command line 



Using Marius

• Features a Python API


• Write custom models 

• High-degree of control and customization

Extensible



Using Marius

• Multiple data converters to transform raw data 
into the Marius input format


• Support for conversion of TSV, CSV, Parquet file 
formats


• Output embeddings can be converted to 
commonly used types such as PyTorch tensors 

Interoperability



Key innovation in Marius

Results  

- 10x reduction in runtime vs. DGL-KE on Twitter

- 3.7x runtime reduction vs. PBG on Freebase86m

- 2x higher utilization than PBG, 6-8x higher 

utilization than DGL-KE

Method  

- Use pipelining and async IO hide data movement

- Utilize the full memory hierarchy with a partition buffer

- Minimize IO with Buffer-aware Edge Traversal Algorithm (BETA)



Partition-based processing

Node Embedding Partitions 

Node embeddings are partitioned uniformly into p 
disjoint partitions. 
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Edge Buckets 

Edge bucket (i,j) contains all edges with a source in 
partition i and a destination in partition j 

To iterate over all edges, we need to iterate 
over all edge buckets

Node embedding table
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Edge bucket ordering and IO
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Partitions on disk

Partitions in Buffer
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The order in which edge buckets are 
processed has an impact on IO

Example: After processing edge bucket (3, 2)  

Processing (2, 3): Requires no extra swaps 

Processing (2, 4): Requires one swap 

Processing (4, 5): Requires two swaps 

c = 3

p = 6Θ2 Θ3



Edge bucket ordering and IO
Θ0

Θ1

Θ2

Θ3

Θ4

Θ5

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Partitions on disk Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Random Ordering

Locality-aware Ordering

~23 swaps

12 swaps

We propose an ordering which is close to this bound

We show a Lower Bound

Can never process more than 2c - 1 edge buckets per swap
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p = 6

Partitions in Buffer



Buffer-aware Edge Traversal Algorithm (BETA)

BETA Ordering 

1. Randomly initialize buffer


2. Use the last spot in the buffer to cycle through the 
rest of the partitions, processing their 
corresponding edge buckets


3. Fix a new c - 1 partitions and repeat until all edge 
buckets have been processed
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Buffer-aware Edge Traversal Algorithm (BETA)

BETA Ordering 

1. Randomly initialize buffer
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Buffer-aware Edge Traversal Algorithm (BETA)

BETA Ordering 

1. Randomly initialize buffer
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Buffer-aware Edge Traversal Algorithm (BETA)

BETA Ordering 

1. Randomly initialize buffer


2. Use the last spot in the buffer to cycle through 
the rest of the partitions, processing their 
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3. Fix a new c - 1 partitions and repeat until all edge 
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Buffer-aware Edge Traversal Algorithm (BETA)

BETA Ordering 

1. Randomly initialize buffer


2. Use the last spot in the buffer to cycle through the 
rest of the partitions, processing their 
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edge buckets have been processed

Partitions on disk

Partitions in Buffer

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Θ2 Θ3 Θ5 c = 3

p = 6

Θ0

Θ1

Θ2

Θ3

Θ4

Θ5

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5



Buffer-aware Edge Traversal Algorithm (BETA)

BETA Ordering 

1. Randomly initialize buffer


2. Use the last spot in the buffer to cycle through the 
rest of the partitions, processing their 
corresponding edge buckets


3. Fix a new c - 1 partitions and repeat until all 
edge buckets have been processed
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BETA ordering gives 7 swaps (6 is the lower bound)



BETA ordering enables high GPU utilization

Results  

- 10x reduction in runtime vs. DGL-KE on Twitter

- 3.7x runtime reduction vs. PBG on Freebase86m

- 2x higher utilization than PBG, 6-8x higher 

utilization than DGL-KE

Method  

- Use pipelining and async IO hide data movement

- Utilize the full memory hierarchy with a partition buffer

- Minimize IO with Buffer-aware Edge Traversal Algorithm (BETA)



Use-case: Construction of Scientific Knowledge Graphs

Basilosaurus Eocene
geochronology

Wheeler Shale 
Trilobites ?

geochronology

Analogical Reasoning Example

Joint embeddings of text and existing knowledge graphs to enable 

analogical reasoning and knowledge completion in any domain



Marius: Scalable graph learning

Marius achieves graph learning over billion-edge graphs 

10x faster and 5x cheaper than competing solutions

Learning Massive Graph Embeddings on a Single Machine, OSDI’2021

Find more at: marius-project.org



Marius: Scalable graph learning

Marius achieves graph learning over billion-edge graphs 

10x faster and 5x cheaper than competing solutions

Learning Massive Graph Embeddings on a Single Machine, OSDI’2021

Find more at: marius-project.org Thank you! 
@thodrek



The case of exploiting the full memory stack

Higher-dimensional embeddings can lead to higher accuracy

Per-epoch runtime and reconstruction-accuracy as we increase the embedding size for Freebase

(86M nodes and 338M edges)

*MRR: mean reciprocal 
rank (higher is better)


