
Theo Rekatsinas | thodrek@cs.wisc.edu

Marius
Machine Learning over Billion-Edge Graphs 10x Faster and 5x Cheaper

The team
Student Leads

Jason

Mohoney

Roger

Waleffe

Prof. Theo
Rekatsinas

Prof. Shivaram
Venkataraman

Project Leads

The universality of semantic structure

Scientific graphs Knowledge Graphs Server Logs

Graphs are universal representations of rich semantics about
entities (nodes) and their relationships (edges)

Harnessing the power of structure

Reasoning requires operating over relational structured data

Node classification Link prediction Related-entities prediction

?

Modern Machine Learning over graphs

Learned vector representations of nodes and edges are key to deep graph learning

Multiple node and edge types

Nodes

d-dimensional vectors

Edge

Types

k-dimensional vectors

Encoder Decoder

Node
Classes

Edge Type (Node1, Node2)
= Yes or No?

Graph learning is memory- and IO-bound

Graphs introduce irregular access patterns

Graph learning is memory- and IO-bound

Example: Learning Graph Embeddings

Training Process

// E ordered randomly
for (s, r, d) in E:

 // compute loss of model for an edge
 computeLoss(s, r, d)

// apply updates to embeddings of edge
 update(s, r, d)

Training requires iterating over all edges and
retrieving/updating embedding vectors

Graph learning is memory- and IO-bound
Example: Learning Graph Embeddings

Training Process

// E ordered randomly
for (s, r, d) in E:

 // compute loss of model for an edge
 computeLoss(s, r, d)

// apply updates to embeddings of edge
 update(s, r, d)

Training requires iterating over all edges and
retrieving/updating embedding vectors

Madison

Capital of

Wisconsin

Born in John
Bardeen

Borders
Illinois

Faculty at
UIUC

Awarded

Nobel
Prize in
Physics
(1956)

Nobel
Prize in
Physics
(1972)

Awarded

Located in

Node embeddings Table

Edge-type embeddings Table

0 d

0 d

|V |

|R |

Read

Read

Graph learning is memory- and IO-bound
Example: Learning Graph Embeddings

Training Process

// E ordered randomly
for (s, r, d) in E:

 // compute loss of model for an edge
 computeLoss(s, r, d)

// apply updates to embeddings of edge
 update(s, r, d)

Training requires iterating over all edges and
retrieving/updating embedding vectors

Madison

Capital of

Wisconsin

Born in John
Bardeen

Borders
Illinois

Faculty at
UIUC

Awarded

Nobel
Prize in
Physics
(1956)

Nobel
Prize in
Physics
(1972)

Awarded

Located in

Node embeddings Table

Edge-type embeddings Table

0 d

0 d

|V |

|R |

Write

Write

Graph learning is memory- and IO-bound

Embedding tables do not fit in GPU memory

AWS P3.2xLarge instance:

- 16 GB GPU Memory

- 64 GB CPU Memory

Freebase86m:

- 338 million edges, 86 million nodes, 15,000 edge types

- Size of node embedding table for d = 400:

86 million x 400 x 4 bytes = 138 GB

Moving embeddings to compute

1. Store embeddings in CPU memory and transfer to GPU(s)

- Bottlenecked by transfer overheads

- Limited scalability

DGL

PyTorch Big-Graph (PBG)

3. Distribute embeddings across multiple machines

 - Bottlenecked by transfer overheads

 - Expensive

2. Partition node embeddings and store on disk

 - Limited by disk throughput

PBG & DGL

Moving embeddings to compute

The key bottleneck when training graph learning models is data movement

Marius: Scalable graph learning

Pipelining and a novel data replacement policy allow Marius to maximize resource
utilization of the entire memory hierarchy (including disk, CPU, and GPU memory)

Achieves graph learning over billion edge graphs in a single machine

Learning Massive Graph Embeddings on a Single Machine, OSDI’2021

Find more at: marius-project.org

Marius: Scalable graph learning

Marius can be 10x faster than competing methods in a single box

*MRR: mean reciprocal
rank (higher is better)

Measuring time-to-reconstruction-accuracy for

Dot-Product graph embeddings over the Twitter graph

(41.6M nodes and 1.5B edges)

Marius: Scalable graph learning

Marius can be 5x cheaper than competing methods; single-box
(1GPU) Marius has comparable runtime with multi-GPU solutions

Per-epoch runtime and monetary cost ($) for embedding the Freebase Knowledge Graph

(86M nodes and 338M edges)

Open-source Marius

Compatible

Released at:
marius-project.org

Using Marius

Config-based development
• No-code paradigm: running Marius only

requires a simple configuration file 

• Customize parameters, defaults provided
if not specified 

• Easy to run from command line 

Using Marius

• Features a Python API

• Write custom models 

• High-degree of control and customization

Extensible

Using Marius

• Multiple data converters to transform raw data
into the Marius input format

• Support for conversion of TSV, CSV, Parquet file
formats

• Output embeddings can be converted to
commonly used types such as PyTorch tensors 

Interoperability

Key innovation in Marius

Results

- 10x reduction in runtime vs. DGL-KE on Twitter

- 3.7x runtime reduction vs. PBG on Freebase86m

- 2x higher utilization than PBG, 6-8x higher

utilization than DGL-KE

Method

- Use pipelining and async IO hide data movement

- Utilize the full memory hierarchy with a partition buffer

- Minimize IO with Buffer-aware Edge Traversal Algorithm (BETA)

Partition-based processing

Node Embedding Partitions

Node embeddings are partitioned uniformly into p
disjoint partitions.

Θ0

Θ1

Θ2

Θ3

Θ4

Θ5

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Global Adjacency Matrix

Edge Buckets

Edge Buckets

Edge bucket (i,j) contains all edges with a source in
partition i and a destination in partition j

To iterate over all edges, we need to iterate
over all edge buckets

Node embedding table

0 d

|V |

d
Θ0

Θ2

Θ4

Θ1

Θ3

Θ5

Partitioned node embedding table (p = 6)

ΘV

0

|V |

Edge bucket ordering and IO
Θ0

Θ1

Θ2

Θ3

Θ4

Θ5

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Partitions on disk

Partitions in Buffer

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

The order in which edge buckets are
processed has an impact on IO

Example: After processing edge bucket (3, 2)

Processing (2, 3): Requires no extra swaps

Processing (2, 4): Requires one swap

Processing (4, 5): Requires two swaps

c = 3

p = 6Θ2 Θ3

Edge bucket ordering and IO
Θ0

Θ1

Θ2

Θ3

Θ4

Θ5

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Partitions on disk Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Random Ordering

Locality-aware Ordering

~23 swaps

12 swaps

We propose an ordering which is close to this bound

We show a Lower Bound

Can never process more than 2c - 1 edge buckets per swap

⌈
p2 − c2

2c − 1
⌉ = ⌈

62 − 32

2 * 3 − 1
⌉ = 6

c = 3

p = 6

Partitions in Buffer

Buffer-aware Edge Traversal Algorithm (BETA)

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle through the
rest of the partitions, processing their
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until all edge
buckets have been processed

Buffer-aware Edge Traversal Algorithm (BETA)

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle through the
rest of the partitions, processing their
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until all edge
buckets have been processed

Partitions on disk

Partitions in Buffer

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Θ0 Θ1 Θ2 c = 3

p = 6

Θ0

Θ1

Θ2

Θ3

Θ4

Θ5

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Buffer-aware Edge Traversal Algorithm (BETA)

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle through
the rest of the partitions, processing their
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until all edge
buckets have been processed

Partitions on disk

Partitions in Buffer

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Θ0 Θ1 Θ3 c = 3

p = 6

Θ0

Θ1

Θ2

Θ3

Θ4

Θ5

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Buffer-aware Edge Traversal Algorithm (BETA)

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle through
the rest of the partitions, processing their
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until all edge
buckets have been processed

Partitions on disk

Partitions in Buffer

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Θ0 Θ1 Θ4 c = 3

p = 6

Θ0

Θ1

Θ2

Θ3

Θ4

Θ5

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Buffer-aware Edge Traversal Algorithm (BETA)

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle through
the rest of the partitions, processing their
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until all edge
buckets have been processed

Partitions on disk

Partitions in Buffer

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Θ0 Θ1 Θ5 c = 3

p = 6

Θ0

Θ1

Θ2

Θ3

Θ4

Θ5

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Buffer-aware Edge Traversal Algorithm (BETA)

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle through the
rest of the partitions, processing their
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until all
edge buckets have been processed

Partitions on disk

Partitions in Buffer

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Θ2 Θ3 Θ5 c = 3

p = 6

Θ0

Θ1

Θ2

Θ3

Θ4

Θ5

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Buffer-aware Edge Traversal Algorithm (BETA)

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle through the
rest of the partitions, processing their
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until all
edge buckets have been processed

Partitions on disk

Partitions in Buffer

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Θ2 Θ3 Θ5 c = 3

p = 6

Θ0

Θ1

Θ2

Θ3

Θ4

Θ5

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

BETA ordering gives 7 swaps (6 is the lower bound)

BETA ordering enables high GPU utilization

Results

- 10x reduction in runtime vs. DGL-KE on Twitter

- 3.7x runtime reduction vs. PBG on Freebase86m

- 2x higher utilization than PBG, 6-8x higher

utilization than DGL-KE

Method

- Use pipelining and async IO hide data movement

- Utilize the full memory hierarchy with a partition buffer

- Minimize IO with Buffer-aware Edge Traversal Algorithm (BETA)

Use-case: Construction of Scientific Knowledge Graphs

Basilosaurus Eocene
geochronology

Wheeler Shale
Trilobites ?

geochronology

Analogical Reasoning Example

Joint embeddings of text and existing knowledge graphs to enable

analogical reasoning and knowledge completion in any domain

Marius: Scalable graph learning

Marius achieves graph learning over billion-edge graphs

10x faster and 5x cheaper than competing solutions

Learning Massive Graph Embeddings on a Single Machine, OSDI’2021

Find more at: marius-project.org

Marius: Scalable graph learning

Marius achieves graph learning over billion-edge graphs

10x faster and 5x cheaper than competing solutions

Learning Massive Graph Embeddings on a Single Machine, OSDI’2021

Find more at: marius-project.org Thank you!
@thodrek

The case of exploiting the full memory stack

Higher-dimensional embeddings can lead to higher accuracy

Per-epoch runtime and reconstruction-accuracy as we increase the embedding size for Freebase

(86M nodes and 338M edges)

*MRR: mean reciprocal
rank (higher is better)

