&>marius

Marius

Machine Learning over Billion-Edge Graphs 10x Faster and 5x Cheaper

Theo Rekatsinas | thodrek@cs.wisc.edu

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

&>marius

The team

Student Leads Project Leads

Jason
Mohoney

Prof. Theo Prof. Shivaram
Rekatsinas Venkataraman

The universality of semantic structure

N N/
N

|)

0~ >N~ N

Scientific graphs

Capital of

e

Borders

Born in

Awarded Awarded

Nobel
Prize in
Physics
(1972

Nobel
Prize in
Physics
1956

Knowledge Graphs

x Located in

Supervisor
& Reasoner

External
Data | NN

° I DBStream*

Server Logs

Graphs are universal representations of rich semantics about
entities (hodes) and their relationships (edges)

&>marius

Harnessing the power of structure

. — @
‘ Located in

Capital of

wJnammal
\ R

Node classification Link prediction Related-entities prediction

Reasoning requires operating over relational structured data

&>marius

Modern Machine Learning over graphs

d-dimensional vectors
Lt 1
HEEEEEER c
Nodes LT T T [[[[% asses
HEEEEEER Node | | | |
EEEEEEEE -
k-dimensional vectors Edge Type (Node1, Node?)
= Yes or No?
Encoder Decoder
Edge
Types

Multiple node and edge types

Learned vector representations of nodes and edges are key to deep graph learning

&>marius

Graph learning is memory- and 10-bound

d-dimensional vectors

Nodes
I k-dimensional vectors
Encoder
Edge
Types

Multiple node and edge types

Graphs introduce irregular access patterns

&>marius

Graph learning is memory- and 10-bound

Example: Learning Graph Embeddings

d-dimensional vectors
Training requires iterating over all edges and

retrieving/updating embedding vectors

Nodes
» Training Process
k-dimensional vectors // E ordered randomly
for (s, r, d) in E:
Encoder
Edge
Types // compute loss of model for an edge
computeloss (s, r, d)
Multiple node and edge types
// apply updates to embeddings of edge

update (s, r, d)

Graph learning is memory- and 10-bound

Example: Learning Graph Embeddings

Training requires iterating over all edges and
retrieving/updating embedding vectors

Training Process

// E ordered randomly
for (s, r, d) 1in E:

// compute loss of model for an edge
computeloss (s, r, d)

// apply updates to embeddings of edge
update (s, r, d)

Capital of

Borders
.

Faculty at

A

Born In

Awarded Awarded

Nobel
Prize in
Physics
1972

Nobel
Prize in
Physics
(1956)

| ocated in

&>marius

d

Read

| |

%
Node embeddings Table

Read

Edge-type embeddings Table

&>marius

Graph learning is memory- and 10-bound

d
Example: Learning Graph Embeddings Borders T
< Wi
. . : : : rite
Training requires iterating over all edges and
retrieving/updating embedding vectors Capital of ‘ Located in
%

Training Process Node embeddings Table

Faculty at

A

// E ordered randomly

for (s, r, d) 1n E: Born in
0 d
ﬁ
// compute loss of model for an edge
computeloss (s, r, d) Write
// apply updates to embeddings of edge Awarded Awarded ———
update(s, r, d)
Nobel | R

Nobel Prize in
Physics

1972

Prize in
Physics
(1956)

Edge-type embeddings Table

&>marius

Graph learning is memory- and 10-bound

Freebase86m:

- 338 million edges, 86 million nodes, 15,000 edge types

"Located . E Read E Write - Size of node embedding table for d = 400:

V] VI

Node embeddings Table Node embeddings Table 86 million x 400 x 4 bytes = 138 GB

0 d 0 d

] E—
Read Write AWS P3.2xLarge instance:

R i - 16 GB GPU Memory

Edge-type embeddings Edge-type embeddings

- 64 GB CPU Memory

Embedding tables do not fit in GPU memory

&>marius

Moving embeddings to compute

1. Store embeddings in CPU memory and transfer to GPU(s)
- Bottlenecked by transfer overheads DGL
- Limited scalability

2. Partition node embeddings and store on disk

- Limited by disk throughput PyTorch Big-Graph (PBG)

3. Distribute embeddings across multiple machines
- Bottlenecked by transfer overheads PBG & DGL
- EXpensive

&>marius

Moving embeddings to compute

e
O
-

PBG
DGL-KE

GPU Util (%)
U
=

-

0 200 400 600 800 1000 1200 1400
Time (S)

The key bottleneck when training graph learning models is data movement

&>marius

Marius: Scalable graph learning

Learning Massive Graph Embeddings on a Single Machine, OSDI’2021
Find more at: marius-project.org

~ 100
CPU Memory GPU Memory X ﬁgizz Eglnl\?eii{;fy)l)arﬁﬁom)
: ' »:_ jl'r_a_n;f_e; _l__> g 80 PBG (On Disk, 8 Partitions)
o ;g 6 O | DGL-KE (In Memory)
Tt i Relatio_n N
' Compute | Embedding = 40-
Embedding . | I A PRI -
Parameters B : ‘__i Transfer i‘ E 201
_________ O 0

0 200 400 600 800 1000 1200 1400
Time (S)

Pipelining and a novel data replacement policy allow Marius to maximize resource
utilization of the entire memory hierarchy (including disk, CPU, and GPU memory)

Achieves graph learning over billion edge graphs in a single machine

Marius: Scalable graph learning

System Model MRR | Hits Time
@] @10
PBG Dot 313 239 451 5h15m *MRR: mean reciprocal
DGL-KE Dot 220 153 385 35h3m rank (higher is better)
Marius Dot 310 236 445 3h28m

Measuring time-to-reconstruction-accuracy for
Dot-Product graph embeddings over the Twitter graph
(41.6M nodes and 1.5B edges)

Marius can be 10x faster than competing methods in a single box

Marius: Scalable graph learning

System Deployment | Epoch Time (s) | Per Epoch Cost ($)
Marius 1-GPU 288 248
DGL-KE 2-GPUs 761 1.29
DGL-KE 4-GPUs 426 1.45
DGL-KE 8-GPUs 220 1.50
DGL-KE Distributed 1237 1.69
PBG 1-GPU 1005 .85
PBG 2-GPUs 430 13
PBG 4-GPUs 330 1.12
PBG 8-GPUs 273 1.86
PBG Distributed 1199 1.64

(86M nodes and 338M edges)

Marius can be 5x cheaper than competing methods; single-box
(1GPU) Marius has comparable runtime with multi-GPU solutions

&>marius

Per-epoch runtime and monetary cost ($) for embedding the Freebase Knowledge Graph

Open-source Marius

O PyTorch

Installation from source with Pip Compatible

1. Install latest version of PyTorch for your CUDA version:
Linux:

o CUDA 10.1: python3 -m pip install torch==1.7.1+cul@l -f
https://download.pytorch.org/whl/torch_stable.html

o CUDA 10.2: python3 -m pip install torch==1.7.1

o CPU Only: python3 -m pip install torch==1.7.1+cpu -f
https://download.pytorch.org/whl/torch_stable.html

MacOS:
o CPU Only: python3 -m pip install torch==1.7.1
2. Clone the repository git clone https://github.com/marius—team/marius.git

3. Build and install Marius cd marius; python3 -m pip install

Marius in Docker dOCker

Marius can be deployed within a docker container. Here is a sample ubuntu dockerfile (loca
examples/docker/dockerfile) which contains the necessary dependencies preinstalled f

Building and running the container

Build an image with the name marius and the tag example :

docker build -t marius:example -f examples/docker/dockerfile examples/docker

Search docs

Introduction

Quick Start

Build

System Overview
Configuration

10 Format
Training

Models

Loss Functions
Evaluation

Storage Backends

Batch
Buffer
Config
DataSet
Datatypes
Decoder
Encoder
Evaluator
10
Logger
Marius

Model

Ordering

Pipeline
Storage
Trainer

Util

@ » Batch View page source

Batch

class Batch
Contains metadata, edges and embeddings for a single batch.
Subclassed by PartitionBatch

Public Functions

Batch(bool train)

Constructor

~Batch()

void LocalSample()

Destructor Construct additional negative samples and neighborhood information from the
batch

void accumulateUniquelIndices|()

Populates the unique_<>_indices tensors

void embeddingsToDevice(int device_id)

Transfers embeddings, optimizer state, and indices to specified device

void prepareBatch()

Populates the src_pos_embeddings, dst_post_embeddings, relation_embeddings,
src_neg_embeddings, and dst_neg_embeddings tensors for model computation

void accumulateGradients|()

Accumulates gradients into the unique_node_gradients and unique_relation_gradients
tensors, and applies optimizer update rule to create the unique_node_gradients2 and
unique_relation_gradients2 tensors

void embeddingsToHost()

Transfers gradients and embedding updates to host

Released at:
marius-project.org

58 Apache-2.0 License

Using Marius

Config-based development

® No-code paradigm: running Marius only
requires a simple configuration file

® Customize parameters, defaults provided
If not specified

® Easy to run from command line

o0

1

= my_config.ini ®

Users >
1

[training]

= my_config.ini

my_config.ini

Using Marius

Extensible

® Features a Python API
® \Write custom models

® High-degree of control and customization

In [}]:

Defining a custom model

Using Marius

Interoperabllity

® Multiple data converters to transform raw data
into the Marius input format

® Support for conversion of TSV, CSV, Parquet file
formats

® Output embeddings can be converted to
commonly used types such as PyTlorch tensors

&>marius

Key innovation in Marius

Method Results
- Use pipelining and async 10 hide data movement - 10x reduction in runtime vs. DGL-KE on Twitter
- Utilize the full memory hierarchy with a partition buffer - 3.7x runtime reduction vs. PBG on Freebase86m

- Minimize 10 with Buffer-aware Edge Traversal Algorithm (BETA) - 2x higher utilization than PBG, 6-8x higher
utilization than DGL-KE

Y

1

X 00 Marius (On Disk, 8 Partitions)
~ 80 - Marius (In Memory)

g PBG (On Disk, 8 Partitions)
."3 60- m DGL-KE (In Memory)

N

:

= 40- 4 q

-

5 20-

¥

© 0

0 200 400 600 800 1000 1200 1400
Time (s)

Partition-based processing

0 d ®O

Node Embedding Partitions

Node embeddings are partitioned uniformly into p 0,
disjoint partitions. V) o
5

| V]

Node embedding table Partitioned node embedding table (p = 6)

1
Destination Partition

© .
Edge Buckets : DRI
CC) @1 ‘-.. .. .’00”
Edge bucket (i,J) contains all edges with a source in Z 5 < e,
partition | and a destination in partition | s 2 [,
o Edge Buckets
8 @3 ‘ ------------ o
S “t R
(% e . “0
@4 ‘ lllll “Q“
To iterate over all edges, we need to iterate o <
5
over all edge buckets
Global Adjacency Matrix

Edge bucket ordering and 10

&>marius
Destination Partition

® © 0O, 0, 0, O.

0,
The order in which edge buckets are _ 9
processed has an impact on IO 9
.-IEJ @2
O
als
S 0
Example: After processing edge bucket (3, 2) 5 3
O
Vp)
Processing (2, 3): Requires no extra swaps O,
Processing (2, 4): Requires one swap Q.

Processing (4, 5): Requires two swaps

Partitions in Buffer

Partitions on disk O, 0,10, 0; 0, 05| p

1
@)

&>marius
Edge bUCket Ordering and IO Destination Partition
®

o O 0, 6; 0O, O

Random Ordering ~23 swaps =

Locality-aware Ordering 12 swaps "
O
=
%

We show a Lower Bound

Can never process more than 2c - 1 edge buckets per swap

[pz_cz] 0 62 — 32 -y
2e—1 " 2%3-1" B
Partitions in Buffer ¢ =3

1
o)

We propose an ordering which is close to this bound Partitions on disk Q)| 0,10, 0;| 0, 05 p

&>marius
Buffer-aware Edge Traversal Algorithm (BETA)

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle through the
rest of the partitions, processing their
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until all edge
buckets have been processed

&>marius
Buffer-aware Edge Traversal Algorithm (BETA)

Destination Partition

® © 60, 0, 0, O.

BETA Ordering
5
1. Randomly initialize buffer b=
)
als
2. Use the last spot in the buffer to cycle through the D
rest of the partitions, processing their =
corresponding edge buckets 3
0,
3. Fix a new c - 1 partitions and repeat until all edge
buckets have been processed CF

Partitions in Buffer

Partitions on disk Q)| 0,10, 0;] 0, 05| p

|
o)

&>marius
Buffer-aware Edge Traversal Algorithm (BETA)

Destination Partition

® © 0O, 0, 0, O.

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle through
the rest of the partitions, processing their
corresponding edge buckets

Source Partition

3. Fix a new c - 1 partitions and repeat until all edge
buckets have been processed CF

Partitions in Buffer

Partitions on disk Q)| 0,10, 0;] 0, 05| p

|
o)

&>marius
Buffer-aware Edge Traversal Algorithm (BETA)

Destination Partition

® © 060, 0, 0, O.

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle through
the rest of the partitions, processing their
corresponding edge buckets

Source Partition

3. Fix a new c - 1 partitions and repeat until all edge
buckets have been processed

Partitions in Buffer

Partitions on disk Q)| 0,10, 0;] 0, 05| p

|
o)

&>marius
Buffer-aware Edge Traversal Algorithm (BETA)

Destination Partition

® © 060, 0, 0, O.

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle through
the rest of the partitions, processing their
corresponding edge buckets

Source Partition

3. Fix a new c - 1 partitions and repeat until all edge
buckets have been processed

Partitions in Buffer

Partitions on disk Q)| 0,10, 0;] 0, 05| p

|
o)

&>marius
Buffer-aware Edge Traversal Algorithm (BETA)

Destination Partition

©®, 0 06, 6; 06, O;

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle through the
rest of the partitions, processing their
corresponding edge buckets

Source Partition

3. Fix a new c - 1 partitions and repeat until all
edge buckets have been processed

Partitions in Buffer

Partitions on disk Q)| 0,10, 0;] 0, 05| p

|
o)

&>marius
Buffer-aware Edge Traversal Algorithm (BETA)

Destination Partition

©®, 0 06, 6; 06, O;

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle through the
rest of the partitions, processing their
corresponding edge buckets

Source Partition

3. Fix a new c - 1 partitions and repeat until all
edge buckets have been processed

Partitions in Buffer

BETA ordering gives 7 swaps (6 is the lower bound)
Partitions on disk Q)| 0,10, 0;] 0, 05| p

|
o)

&>marius
BETA ordering enables high GPU utilization

Method Results
- Use pipelining and async 10 hide data movement - 10x reduction in runtime vs. DGL-KE on Twitter
- Utilize the full memory hierarchy with a partition buffer - 3.7x runtime reduction vs. PBG on Freebase86m

- Minimize 10 with Buffer-aware Edge Traversal Algorithm (BETA) - 2x higher utilization than PBG, 6-8x higher
utilization than DGL-KE

~

1

X 00 Marius (On Disk, 8 Partitions)
b 80 | Marius (In Memory)

g PBG (On Disk, 8 Partitions)
;3 6 O | m DGL-KE (In Memory)

N

:

= 40- 4 l‘\

-

- 20-

A

© 0

0 200 400 600 800 1000 1200 1400
Time (s)

&>marius

Use-case: Construction of Scientific Knowledge Graphs

Simplified Knowledge Base

g gJackson Group } Mississippi, USA : , :
-~ “Faer _|§ " Yazoo Formation) Analogical Reasoning Example)
: | environment | & Tullos Member } Louisiana, USA &
Mammalia /ecology marine ? Y
L
Birket F ti Fayum, Egypt AR
taxonomk Cetacea ecology irket Qarun Formation } Fay ayp geochronology ;
| geochronology Basilosaurus > Eocene R
. fossil occurrence f‘v
taxonomy Basilosaurus 23,03 Myr L . | :
cetoides Priabonian 3'78 § Elrath/a kingii, famed trilobite of the Wheeler
- - o geochronology Shale
R ccene | et wzwr Wheeler Shale » ,
utetian . . ’
47.8 Myr Trilobites o

Textual Mentions

Fossils from an extinct toothed (Atchaeocete) whale, Basilosaurus cetoides, were found in a surface exposure of the
Pachuta Marl Member of the late Eocene Yazoo Clay near the Matherville community in Wayne County, Mississippi.

04
1

0.3
1

The Yazoo Clay Formation makes up the upper half of the Jackson Group in the central Gulf Coastal Plain,
representing deposition during the TAGC4.3 marine transgression.

Cosine similiarity
0.2

4000 3000 2000
Geologic time (Ma)

Joint embeddings of text and existing knowledge graphs to enable
analogical reasoning and knowledge completion in any domain

&>marius

Marius: Scalable graph learning

Learning Massive Graph Embeddings on a Single Machine, OSDI’2021

Destination Partition

® © 0, 0, 0, O

~ 1 00 c
NS Marius (On Disk, 8 Partitions) 9
- . Marius (In Memory) g
CPU Merlp_ciry____l ________ GPU Memory g 80 PBG (On Disk, 8 Partitions) o
| Load > > Tansfer 1> 2 0. DGL-KE (In Memory) 3
Relation ﬁ
! ! Embedding ot
Embedding I | I | Parameters = 4() -
Parameters «— Update —] < 1 Transfer |« D
__________________ o 20 Can never process more than 2c - 1 edge buckets per swap
=
© ol- - - - - - - - 2 _ 2 62 — 32
0 200 400 600 800 1000 1200 1400 Lt 1=6
Time (S) 2c—1 2%3 -1

Marius achieves graph learning over billion-edge graphs
10x faster and 5x cheaper than competing solutions

Find more at: marius-project.org

&>marius

Marius: Scalable graph learning

Learning Massive Graph Embeddings on a Single Machine, OSDI’2021

Destination Partition

® © 0, 0, 0, O

o
-
-

Marius (On Disk, 8 Partitions)

Partition

Q)
<
1 Marius (In Memory)
CPU MeT-cir-y----. ________ GPU Memory g 80 PBG (On Disk, 8 Partitions) o
| Load > | Transfr | 2 0. DGL-KE (In Memory) 3
Relation ﬁ
! ! Embedding ot
Embedding I | I | Parameters = 4() -
Parameters DUMSSSSSETIN . < 1 Transfer |« D
________________ 2 201 Can never process more than 2c - 1 edge buckets per swap
=¥
© o0 - - - - - - - 2 _ 2 62 — 32
0 200 400 600 800 1000 1200 1400 inia B 1=6

Time (S) 2c—1 2*¥3 -1

Marius achieves graph learning over billion-edge graphs
10x faster and 5x cheaper than competing solutions

Find more at: marius-project.org Thank you!
@thodrek

&>marius

The case of exploiting the full memory stack

d Size Partitions MRR Runtime (Epoch)
20 13.6 GB .698 4m
50 34.4 GB - 122 4.8m
100 68.8 GB 32 7126 12.1m
400 275.2 GB 32 731 92.4m
800 550.4 GB 64 731 396m

*MRR: mean reciprocal
rank (higher is better)

Per-epoch runtime and reconstruction-accuracy as we increase the embedding size for Freebase
(86M nodes and 338M edges)

Higher-dimensional embeddings can lead to higher accuracy

