## Marius Machine Learning over Billion-Edge Graphs 10x Faster and 5x Cheaper

Theo Rekatsinas | thodrek@cs.wisc.edu

**S**marius





## The team

### **Student Leads**





### Jason Mohoney

Roger Waleffe



### **Project Leads**





### Prof. Theo Rekatsinas

Prof. Shivaram Venkataraman



## The universality of semantic structure



Scientific graphs Know

Graphs are **universal representations** of rich semantics about entities (nodes) and their relationships (edges)



Knowledge Graphs

Server Logs

## Harnessing the power of structure



### Node classification

Reasoning requires operating over relational structured data



Link prediction

**Related-entities prediction** 









## **Modern Machine Learning over graphs**



Multiple node and edge types

Learned vector representations of nodes and edges are key to deep graph learning





Decoder

Node



Edge Type (Node1, Node2) = Yes or No?







Multiple node and edge types

### Graphs introduce irregular access patterns



d-dimensional vectors







Multiple node and edge types



| Example: Learning Grap | oh Embeddings |
|------------------------|---------------|
|------------------------|---------------|

Training requires iterating over all edges and retrieving/updating embedding vectors

**Training Process** 

```
// E ordered randomly
for (s, r, d) in E:
```

// compute loss of model for an edge
computeLoss(s, r, d)

// apply updates to embeddings of edge
update(s, r, d)

,

2

### Example: Learning Graph Embeddings

Training requires iterating over all edges and retrieving/updating embedding vectors

**Training Process** 

// E ordered randomly
for (s, r, d) in E:

// compute loss of model for an edge
computeLoss(s, r, d)

// apply updates to embeddings of edge
update(s, r, d)





d

d

### Example: Learning Graph Embeddings

Training requires iterating over all edges and retrieving/updating embedding vectors

### **Training Process**

// E ordered randomly
for (s, r, d) in E:

// compute loss of model for an edge
computeLoss(s, r, d)

// apply updates to embeddings of edge
update(s, r, d)





e

e



### Embedding tables do not fit in GPU memory



Freebase86m:

- 338 million edges, 86 million nodes, 15,000 edge types
- Size of node embedding table for d = 400:

86 million x 400 x 4 bytes = 138 GB

**AWS P3.2xLarge instance:** 

- 16 GB GPU Memory
- 64 GB CPU Memory

## Moving embeddings to compute

- Store embeddings in CPU memory
  - Bottlenecked by transfer overhea
  - Limited scalability
- 2. Partition node embeddings and store on disk - Limited by disk throughput
- 3. Distribute embeddings across multiple machines
  - Bottlenecked by transfer overheads
  - Expensive



|   | and | transfer | to | GPU(s) |
|---|-----|----------|----|--------|
| 3 | ds  |          |    |        |



PyTorch Big-Graph (PBG)

PBG & DGL



## Moving embeddings to compute



The key bottleneck when training graph learning models is data movement





### Learning Massive Graph Embeddings on a Single Machine, OSDI'2021 Find more at: marius-project.org





- Pipelining and a novel data replacement policy allow Marius to maximize resource utilization of the entire memory hierarchy (including disk, CPU, and GPU memory)
  - Achieves graph learning over billion edge graphs in a single machine



| System | Model | MRR  | Hits |      | Time  |
|--------|-------|------|------|------|-------|
|        |       |      | @1   | @10  |       |
| PBG    | Dot   | .313 | .239 | .451 | 5h15m |
| DGL-KE | Dot   | .220 | .153 | .385 | 35h3m |
| Marius | Dot   | .310 | .236 | .445 | 3h28m |

Measuring time-to-reconstruction-accuracy for Dot-Product graph embeddings over the Twitter graph (41.6M nodes and 1.5B edges)

Marius can be **10x faster** than competing methods in a single box



\*MRR: mean reciprocal rank (higher is better)



| System | Deployment  | Epoch Time (s) | Per Epoch Cost (\$) |
|--------|-------------|----------------|---------------------|
| Marius | 1-GPU       | 288            | .248                |
| DGL-KE | 2-GPUs      | 761            | 1.29                |
| DGL-KE | 4-GPUs      | 426            | 1.45                |
| DGL-KE | 8-GPUs      | 220            | 1.50                |
| DGL-KE | Distributed | 1237           | 1.69                |
| PBG    | 1-GPU       | 1005           | .85                 |
| PBG    | 2-GPUs      | 430            | .73                 |
| PBG    | 4-GPUs      | 330            | 1.12                |
| PBG    | 8-GPUs      | 273            | 1.86                |
| PBG    | Distributed | 1199           | 1.64                |

Per-epoch runtime and monetary cost (\$) for embedding the Freebase Knowledge Graph (86M nodes and 338M edges)

Marius can be **5x cheaper** than competing methods; single-box (1GPU) Marius has comparable runtime with multi-GPU solutions





## **Open-source Marius**

**O** PyTorch

Compatible

#### Installation from source with Pip

1. Install latest version of PyTorch for your CUDA version:

#### Linux:

- CUDA 10.1: python3 -m pip install torch==1.7.1+cu101 -f https://download.pytorch.org/whl/torch\_stable.html
- CUDA 10.2: python3 -m pip install torch==1.7.1
- CPU Only: python3 -m pip install torch==1.7.1+cpu -f https://download.pytorch.org/whl/torch\_stable.html

#### MacOS:

- CPU Only: python3 -m pip install torch==1.7.1
- 2. Clone the repository git clone https://github.com/marius-team/marius.git
- 3. Build and install Marius cd marius; python3 -m pip install .



#### Marius in Docker

Marius can be deployed within a docker container. Here is a sample ubuntu dockerfile (loca examples/docker/dockerfile) which contains the necessary dependencies preinstalled f

#### Building and running the container

Build an image with the name marius and the tag example : docker build -t marius:example -f examples/docker/dockerfile examples/docker

#### 🕆 Marius

#### Search docs

#### CONTENTS

Introduction Quick Start Build System Overview Configuration IO Format Training Models Loss Functions Evaluation

Storage Backends

#### API

Batch

Buffer Config DataSet Datatypes Decoder Encoder Evaluator IO Logger Marius Model Ordering Pipeline Storage Trainer

Util



🏦 » Batch

View page source

#### Batch

#### class Batch

Contains metadata, edges and embeddings for a single batch.

Subclassed by PartitionBatch

**Public Functions** 

Batch(bool train)

Constructor

~Batch()

#### void localSample()

Destructor Construct additional negative samples and neighborhood information from the batch

void accumulateUniqueIndices()

Populates the unique\_<>\_indices tensors

void embeddingsToDevice(int device\_id)

Transfers embeddings, optimizer state, and indices to specified device

#### void prepareBatch()

Populates the src\_pos\_embeddings, dst\_post\_embeddings, relation\_embeddings, src\_neg\_embeddings, and dst\_neg\_embeddings tensors for model computation

#### void accumulateGradients()

Accumulates gradients into the unique\_node\_gradients and unique\_relation\_gradients tensors, and applies optimizer update rule to create the unique\_node\_gradients2 and unique\_relation\_gradients2 tensors

void embeddingsToHost()

Transfers gradients and embedding updates to host

### Released at: marius-project.org

### Apache-2.0 License



## **Using Marius**

### Config-based development

- No-code paradigm: running Marius only requires a simple configuration file
- Customize parameters, defaults provided if not specified
- Easy to run from command line



#### my\_config.ini

#### ≡ my\_config.ini ●

Users >

1

🖲 🥚 🔵

L1

ρ

go

æ

₿

≣ my\_config.ini

- 2 [training]
- 3 batch\_size=1000
- 4 num\_epochs=15



## **Using Marius**

### Extensible

- Features a Python API
- Write custom models
- High-degree of control and customization

| _ |   | _ |
|---|---|---|
|   |   | Т |
|   |   | - |
|   |   |   |
|   | _ |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   |   |







## **Using Marius**

### Interoperability

- Multiple data converters to transform raw data into the Marius input format
- Support for conversion of TSV, CSV, Parquet file formats
- Output embeddings can be converted to commonly used types such as PyTorch tensors

son\$ son\$ son\$ son\$ son\$ son\$ son\$ son\$









## Key innovation in Marius

<u>Method</u>

- Use pipelining and async IO hide data movement
- Utilize the full memory hierarchy with a partition buffer
- Minimize IO with Buffer-aware Edge Traversal Algorithm (BETA)





### Results - 10x reduction in runtime vs. DGL-KE on Twitter - 3.7x runtime reduction vs. PBG on Freebase86m - 2x higher utilization than PBG, 6-8x higher utilization than DGL-KE Marius (On Disk, 8 Partitions) Marius (In Memory) PBG (On Disk, 8 Partitions) DGL-KE (In Memory) 800 1000 1200 1400 600 Time (s)



## Partition-based processing

### **Node Embedding Partitions**

Node embeddings are partitioned uniformly into p disjoint partitions.

### **Edge Buckets**

Edge bucket (i,j) contains all edges with a source in partition i and a destination in partition j

To iterate over all edges, we need to iterate over all edge buckets





<u>Global Adjacency Matrix</u>



### Edge bucket ordering and IO **Destination Partition** $\Theta_2$ $\Theta_3$ $\Theta_4$ $\Theta_0$ $\Theta_1$ $\Theta_5$ $\Theta_0$ $\Theta_1$ Source Partition $\Theta_2$ $\Theta_3$ $\Theta_{\Delta}$ Processing (2, 3): Requires no extra swaps Processing (2, 4): Requires one swap $\Theta_5$

The order in which edge buckets are processed has an impact on IO

**Example:** After processing edge bucket (3, 2)

Processing (4, 5): Requires two swaps

Partitions in Buffer



Partitions on disk

$$\Theta_0 \mid \Theta_1 \mid \Theta_2 \mid \Theta_3 \mid \Theta_4 \mid \Theta_5 \mid p = 6$$



## Edge bucket ordering and IO

Random Ordering ~23 swaps

Locality-aware Ordering 12 swaps

We show a Lower Bound

Can never process more than 2c - 1 edge buckets per swap

$$\lceil \frac{p^2 - c^2}{2c - 1} \rceil = \lceil \frac{6^2 - 3^2}{2*3 - 1} \rceil = 6$$

We propose an ordering which is close to this bound



Partitions in Buffer



Partitions on disk

$$\Theta_0 \mid \Theta_1 \mid \Theta_2 \mid \Theta_3 \mid \Theta_4 \mid \Theta_5 \mid p =$$



= 6

### **BETA Ordering**

- 1. Randomly initialize buffer
- 2. Use the last spot in the buffer to cycle through the rest of the partitions, processing their corresponding edge buckets
- 3. Fix a new c 1 partitions and repeat until all edge buckets have been processed



### **BETA Ordering**

### **1. Randomly initialize buffer**

- 2. Use the last spot in the buffer to cycle through the rest of the partitions, processing their corresponding edge buckets
- 3. Fix a new c 1 partitions and repeat until all edge buckets have been processed





### **BETA Ordering**

- 1. Randomly initialize buffer
- 2. Use the last spot in the buffer to cycle through the rest of the partitions, processing their corresponding edge buckets
- 3. Fix a new c 1 partitions and repeat until all edge buckets have been processed





### **BETA Ordering**

- 1. Randomly initialize buffer
- 2. Use the last spot in the buffer to cycle through the rest of the partitions, processing their corresponding edge buckets
- 3. Fix a new c 1 partitions and repeat until all edge buckets have been processed





### **BETA Ordering**

- 1. Randomly initialize buffer
- 2. Use the last spot in the buffer to cycle through the rest of the partitions, processing their corresponding edge buckets
- 3. Fix a new c 1 partitions and repeat until all edge buckets have been processed





### **BETA Ordering**

- 1. Randomly initialize buffer
- 2. Use the last spot in the buffer to cycle through the rest of the partitions, processing their corresponding edge buckets
- 3. Fix a new c 1 partitions and repeat until all edge buckets have been processed



p = 6



Partitions on disk

### **BETA Ordering**

- 1. Randomly initialize buffer
- 2. Use the last spot in the buffer to cycle through the rest of the partitions, processing their corresponding edge buckets
- 3. Fix a new c 1 partitions and repeat until all edge buckets have been processed

### **BETA ordering gives 7 swaps (6 is the lower bound)**



p = 6



Partitions on disk

# **BETA ordering enables high GPU utilization**

<u>Method</u>

- Use pipelining and async IO hide data movement
- Utilize the full memory hierarchy with a partition buffer
- Minimize IO with Buffer-aware Edge Traversal Algorithm (BETA)



### <u>Results</u>

- 10x reduction in runtime vs. DGL-KE on Twitter
- 3.7x runtime reduction vs. PBG on Freebase86m
- 2x higher utilization than PBG, 6-8x higher utilization than DGL-KE



## **Use-case: Construction of Scientific Knowledge Graphs**



#### **Textual Mentions**

Fossils from an extinct toothed (Archaeocete) whale, Basilosaurus cetoides, were found in a surface exposure of the

The Yazoo Clay Formation makes up the upper half of the Jackson Group in the central Gulf Coastal Plain, representing deposition during the TAGC4.3 marine transgression.





Wheeler Shale

Joint embeddings of text and existing knowledge graphs to enable analogical reasoning and knowledge completion in any domain





Find more at: marius-project.org



### Learning Massive Graph Embeddings on a Single Machine, OSDI'2021



Can never process more than 2c - 1 edge buckets per swap

$$\lceil \frac{p^2 - c^2}{2c - 1} \rceil = \lceil \frac{6^2 - 3^2}{2*3 - 1} \rceil = 6$$

Marius achieves graph learning over billion-edge graphs 10x faster and 5x cheaper than competing solutions





Find more at: marius-project.org



### Learning Massive Graph Embeddings on a Single Machine, OSDI'2021



Can never process more than 2c - 1 edge buckets per swap

$$\lceil \frac{p^2 - c^2}{2c - 1} \rceil = \lceil \frac{6^2 - 3^2}{2*3 - 1} \rceil = 6$$

Marius achieves graph learning over billion-edge graphs 10x faster and 5x cheaper than competing solutions

> **Thank you! @thodrek**



| d   | Size     | Partitions | MRR  | Runtime (Epoch) |
|-----|----------|------------|------|-----------------|
| 20  | 13.6 GB  | -          | .698 | 4m              |
| 50  | 34.4 GB  | -          | .722 | 4.8m            |
| 100 | 68.8 GB  | 32         | .726 | 12.1m           |
| 400 | 275.2 GB | 32         | .731 | 92.4m           |
| 800 | 550.4 GB | 64         | .731 | 396m            |

Per-epoch runtime and reconstruction-accuracy as we increase the embedding size for Freebase (86M nodes and 338M edges)

Higher-dimensional embeddings can lead to higher accuracy



\*MRR: mean reciprocal rank (higher is better)