
Presented by: Pradap Konda

February 27, 2018

Magellan: Toward Building Entity
Matching Management Systems

Entity Matching

2

Name City State

Dave
Smith Madison WI

Joe Wilson San Jose CA

Dan Smith Middleton WI

Table A

Name City State

David D. Smith Madison WI

Daniel W.
Smith Middleton WI

Table B

l  Lot of work in this area over the past few decades
l  Mainly focus on developing algorithms

Need More Effort on Building EM Systems
l  Truly critical to advance the field

l  EM is engineering by nature
l  Can’t keep developing EM algorithms in vacuum

–  Akin to continuing to develop join algorithms without rest of RDBMS

l  Must build systems to evaluate algorithms,
integrate R&D efforts, make practical impacts

l  As examples, RDBMSs and Big Data systems were
critical to advancing their respective fields

 But what kind of systems we should build, and how?

3

Current Research / System Building Agenda
for Entity Matching

4

l  Two fundamental steps: blocking and matching

Name City State

Dave Smith Madison WI

Joe Wilson San Jose CA

Dan Smith Middleton WI

a1

Name City State

David D. Smith Madison WI

Daniel W. Smith Middleton WI

b1

b2

block on
state = state

(a1, b1)
(a1, b2)
(a3, b1)
(a3, b2)

(a1, b1) +
(a1, b2) -
(a3, b1) -
(a3, b2) +

match

Table A

Table B

a2

a3

Current Research / System Building Agenda
for Entity Matching

Focus on these two steps
•  Develop algorithms
•  Maximize accuracy, minimize cost
Assume other steps are trivial

Build stand-alone
monolithic systems
(e.g., in Java)

Matcher 1
Matcher 2
…

Blocker 1
Blocker 2
…

Research

This is Far from Enough
for Handling EM in Practice

l  EM in practice is significantly more complex
–  A messy, iterative, multiple-step process
–  Many steps perceived trivial are actually quite difficult to do

l  Even if we let a human user be in charge of the whole
EM process, he/she often doesn’t know what to do

l  Will illustrate in the next few slides
–  Using an example of applying supervised learning to do EM

6

How Is EM Done Today in Practice?

l  Development stage

–  finds an accurate workflow, using data samples

l  Production stage
–  executes workflow on entirety of data
–  focuses on scalability

7

A

1M tuples

1M tuples block match
(using supervised learning)

B

Development Stage

yes
no A

B

sample
A’

B’

matcher
V

quality
check blocker

X

(-,-)
(-,-)
(-,-)
(-,-)
(-,-)

(-,-) +
(-,-) +
(-,-) -
(-,-) -
(-,-) +

A’

B’
blocker

X
Cx

A’

B’
blocker

Y
Cy

sample
(-,-)
(-,-)
(-,-)

(-,-) +
(-,-) -
(-,-) +

cross-validate
matcher U

cross-validate
matcher V

0.89 F1

0.93 F1

label

S

G

Select the best matcher: U, V Select the best blocker: X, Y 8

Production Stage

9

(-,-)
(-,-)
(-,-)
(-,-)
(-,-)
(-,-)
(-,-)
(-,-)

(-,-) +
(-,-) -
(-,-) +
(-,-) +
(-,-) -
(-,-) +
(-,-) -
(-,-) +

A

B

blocker X matcher V

Scaling, quality monitoring, exception handling, crash recovery, …

Limitations of Current EM Systems

l  Examined 33 systems
–  18 non-commercial and 15 commercial ones

1. Do not cover the entire EM workflow
2. Hard to exploit a wide range of techniques

–  Visualization, learning, crowdsourcing, etc.

3. Do not distinguish development vs production stages
4. Very little guidance for users
5. Not designed from scratch for extendability

10

Characteristics of 18 Non-Commercial Systems

11

Name Affiliation Scenarios Blocking Matching Exploration
, cleaning

User
interface Language Open

source Scaling

Active Atlas University of Southern
California

Single table, two
tables Hash-based ML-based (decision tree) No GUI,

commandline Java No No

BigMatch US Census Bureau Single table, two
tables Attribute equivalence, rule-based Not supported No Commandline C No

Yes (supports
parallelism on a single

node)

D-Dupe University of
Maryland

Single table, two
tables Attribute equivalence Relational clustering GUI C# No No

Dedoop University of Leipzig Single table Attribute equivalence, sorted
neighborhood

ML-based (decision tree,
logistic regression, SVM etc.) No GUI Java No Yes (Hadoop)

Dedupe DataMade Single table, two
tables Canopy clustering, predicate-based Agglomerative hierarchical

clustering-based Yes Commandline Python Yes Yes

DuDe University of Potsdam Single table, two
tables Sorted neighborhood Rule-based Yes Commandline Java Yes No

Febrl Australian National
University

Single table, two
tables

Full index, blocking index, sorting
index, suffixarray index, qgram
index, canopy index, stringmap

index

Fellegi-Sunter, optimal
threshold, k-means,

FarthestFirst, SVM, TwoStep
Yes GUI,

commandline Python Yes No

FRIL Emory University Single table, two
tables

Attribute equivalence, sorted
neighborhood Expectation maximization Yes GUI Java Yes

Yes (supports
parallelism on a single

node)

MARLIN University of Texas at
Austin Canopy clustering ML-based (decision tree, SVM) No

Merge Toolbox University of
Duisburg-Eissen

Single table, two
tables

Attribute equivalence, canopy
clustering

Probabilistic, expectation
maximization No GUI Java No No

NADEEF Qatar Computing
Research Institute

Single table, two
tables Rule-based No GUI Java No No

OYSTER University of Arkansas Single table, two
tables Attribute equivalence Rule-based Yes Commandline Java Yes No

pydedupe GPoulter (GitHub
username)

Single table, two
tables Attribute equivalence ML-based, rule-based Yes Commandline Python Yes No

RecordLinkage Institute of Medical
Biostatistics, Germany

Single table, two
tables Attribute equivalence ML-based, probabilistic Yes Commandline R Yes No

SERF Stanford University Single table R-Swoosh algorithm No Commandline Java No No

Silk Free University of
Berlin RDF data Rule-based Yes GUI Java Yes

Yes (supports
parallelism on a single

node, Hadoop)

TAILOR Purdue University Single table, two
tables

Attribute equivalence, sorted
neighborhood

Probabilisitic, clustering,
hybrid, induction No GUI Java No No

WHIRL William Cohen Vector space model Commandline C++ No No

Characteristics of 15 Commercial Systems

12

Name Purpose and how
EM fits in

Supported EM
scenarios

Main user
interface

Distinction between
dev. and prod. stages Language Scripting

environment

DataMatch from Data
Ladder

Data cleaning, data matching. EM
forms the core of their solution Multiple tables GUI No No

Dedupe.io Record linkage, deduplication. EM
forms the core of their solution Single table, two tables Web-based No No

FuzzyDupes Duplicate detection, data cleaning.
EM forms the core of their solution Single table, two tables GUI No No

Graphlab Create EM is offered as a service on top of
their GraphLab platform

Single table, two tables,
linking records to a KB Web-based C++ Yes

IBM InfoSphere
Customer data analytics. EM is

supported by a component
(BigMatch) in the product

Single table, two tables Web-based Java No

Informatica Data
Quality

Improve data quality. EM forms a
part of data quality pipeline Single table, two tables GUI No

LinkageWiz Data matching and data cleaning.
EM forms the core of their solution Single table, two tables GUI No No

Oracle Enterprise Data
Quality

Improve data quality. EM forms a
part of data quality pipeline Single table, two tables GUI No

Pentaho Data
Integration

ETL, data integration. EM forms a
part of ETL/data integration pipe

line
Single table, two tables GUI Java No

SAP Data Services
Improve data quality, data

integration. EM forms a part of data
integration pipeline

Single table, two tables GUI No

SAS Data Quality Improve data quality. EM forms a
part of data quality pipeline Single table, multiple tables Web-based Limited support

Strategic Matching Data matching and data cleaning.
EM forms the core of their solution Single table, two tables GUI No No

Talend Data Quality Improve data quality. EM forms a
part of data quality pipeline Single table, two tables GUI No

Tamr Data curation. EM forms a part of
data curation pipeline Multiple tables Web-based No Java No

Trillium Data Quality Improve data quality. EM forms a
part of data quality pipeline Single table, multiple tables GUI No

1. Do Not Cover the Entire EM Workflow
l  Focus on blocking and matching

–  Develop ever more complex algorithms
–  Maximize accuracy and minimize costs

l  Assume other steps are trivial
–  In practice these steps raise serious challenges
–  Example 1: sampling to obtain two smaller tables A’ and B’
–  Example 2: sample a set of tuple pairs to label
–  Example 3: label the set

13

Development Stage

yes
no A

B

sample
A’

B’

matcher
V

quality
check blocker

X

(-,-)
(-,-)
(-,-)
(-,-)
(-,-)

(-,-) +
(-,-) +
(-,-) -
(-,-) -
(-,-) +

A’

B’
blocker

X
Cx

A’

B’
blocker

Y
Cy

sample
(-,-)
(-,-)
(-,-)

(-,-) +
(-,-) -
(-,-) +

cross-validate
matcher U

cross-validate
matcher V

0.89 F1

0.93 F1

label

S

G

Select the best matcher Select the best blocker 14

Example 1: Sampling Two Smaller Tables
l  Tables A and B each has 1M tuples

–  Very difficult to experiment with them directly in development stage
–  Way too big, so too time consuming

l  Need to sample smaller tables
–  A’ from A, B’ from B, say 100K tuples for each table

l  How to sample?
–  Random sampling from A and B may result in very few matching

tuple pairs across A’ and B’
–  How to resolve this?

15

Example 2: Take a Sample from the
Candidate Set (for Subsequent Labeling)

l  Let C be the set of candidate tuple pairs produced by
applying a blocker to two tables A’ and B’

l  We need to take a sample S from C, label S, then use
the labeled set to find the best matcher and train it

l  How to take a sample S from C?
–  Random sampling often does not work well if C contains few

matches
–  In such cases S contains no or very few matches

16

Example 3: Labeling the Sample
l  This task is often divided between two or more people

l  As they label their set of tuple pairs, they may follow
very different notions of matching
–  E.g., given two restaurants with same names, different locations
–  A person may say “match”, another person may say “not a match”

l  At the end, it becomes very difficult to reconcile
different matching notions and relabel the sample

l  This problem becomes even worse when we
crowdsource the labeling process

17

An Illustrating Example
for Distributed Labeling

18

(- , -)
(- , -)
(- , -)
 …
(- , -)
(- , -)
(- , -)
(- , -)
(- , -)
(- , -)

(- , -)
(- , -)
(- , -)
 …
(- , -)

(- , -)
(- , -)
(- , -)
 …
(- , -)

 ([Palmyra, 46 Main St], [Palmyra, 15 Broadway]) -

([KFC, 24 Main St], [KFC, 41 Johnson Ave]) +

Two restaurants match if they refer to the same real-world restaurant

([Laura’s, 23 Farewell Str], [Laura, 23 Farewell]) +

l  EM steps often exploit many techniques
–  SQL querying, keyword search, learning, visualization, information

extraction, outlier detection, crowdsourcing, etc.

l  Difficult to incorporate all
into a single system

l  Difficult to move data
repeatedly across systems
–  An EM system, a visualization system,

an extraction system, etc.

l  Problem: most systems are stand-alone monoliths,
not designed to play well with other systems

2. Hard to Exploit a Wide Range of Techniques

19

3. Do Not Distinguish Dev vs Prod Stages

l  Current systems
–  Provide a set of blockers / matchers
–  Provide a way to specify / optimize / execute workflows
–  Pay very little attention to the development stage

20

4. Little Guidance for Users
l  Suppose user wants at least 95% precision & 80% recall

l  How to start? With rule-based EM first?
Learning-based EM first?

l  What step to take next?

l  How to do a step?
–  E.g., how to label a sample?

l  What to do if after much effort,
still hasn’t reached desired accuracy?

21

5. Not Designed from Scratch for Extendability

l  Can we build a single system that solves all EM problems?
–  No

l  In practice, users often want to
–  Customize, e.g., to a particular domain
–  Extend, e.g., with latest technical advances
–  Patch, e.g., writing code to implement

lacking functionalities

l  Users also want interactive
scripting environments
–  For rapid prototyping, experimentation, iteration

l  Most current EM systems
–  Are not designed so that users can easily customize, extend, patch
–  Are not situated in interactive scripting environments

22

Summary

Many serious limitations:

1. Do not cover the entire EM workflow
2. Hard to exploit a wide range of techniques
3. Do not distinguish development vs production stages
4. Very little guidance for users
5. Not designed from scratch for extendability

23

Our Solution: The Magellan Approach

l  Define a clear scope
–  Each system targets a set of EM scenarios and power users

l  Solve the development stage
–  Develop a how-to guide

§  Helps users discover accurate workflow
§  Must cover all steps
§  Tells users what to do, step by step

–  Develop tools for pain points in the guide
§  On top of PyData ecosystem

l  Solve the production stage in a similar way
–  But focus on scalability, crash recovery, etc.

24

How-to Guide/Tools for Development Stage

yes
no A

B

sample
A’

B’

matcher
V

quality
check blocker

X

(-,-)
(-,-)
(-,-)
(-,-)
(-,-)

(-,-) +
(-,-) +
(-,-) -
(-,-) -
(-,-) +

A’

B’
blocker

X
Cx

A’

B’
blocker

Y
Cy

sample
(-,-)
(-,-)
(-,-)

(-,-) +
(-,-) -
(-,-) +

cross-validate
matcher U

cross-validate
matcher V

0.89 F1

0.93 F1

label

S

G

Select the best matcher Select the best blocker 25

Example How-to Guide for Matching
Tables Using Supervised Learning

26

1. Load tables A and B into Magellan. Downsample if necessary.

2. Perform blocking on the tables to obtain a set of
candidate tuple pairs C.

3. Take a random sample S from C and label pairs in S as
matched / non-matched.

4. Create a set of features then convert S into a set of feature vectors H.
Split H into a development set I and an evaluation set J.

5. Repeat until out of debugging ideas or out of time:

(a) Perform cross validation on I to select the best matcher.
Let this matcher be X.

(b) Debug X using I. This may change the matcher X, the data, labels,
and the set of features, thus changing I and J.

6. Let Y be the best matcher obtained in Step 5. Train Y on I,
then apply to J and report the matching accuracy on J.

How-to Guide/Tools for Development Stage

27

Users want step-by-step guide on how to take a sample then label it

Tool to highlight
possible matching
categories

Tool to
debug labels

Tool to help
revise labels

Build Tools on the PyData Ecosystem
l  Key observation

–  Development stage does a lot of data analysis
§  E.g., analyzing data to discover EM matching rules
§  Often requires cleaning, visualizing, finding outliers, etc.

–  Very hard to incorporate all such techniques into a single EM system
–  Better to build on top of an open-source data ecosystem

l  Two major current ecosystems
–  Python and R

l  PyData ecosystem
–  Used extensively by data scientists
–  > 100K packages (in PyPI)
–  Data analysis stack / big data stack

28

The Magellan Architecture

Development Stage
How-to guide

Tools for pain points
(as Python commands)

Data samples

Python Interactive Environment
 Script Language

Data Analysis Stack
pandas, scikit-learn, matplotlib,

numpy, scipy, pyqt, seaborn,
…

Big Data Stack
PySpark, mrjob, Pydoop,

pp, dispy,
 …

Power
Users

EM
Workflow

PyData
eco

system

Production Stage
How-to guide

Tools for pain points
(as Python commands)

Original data

Match
two tables

29

Raises Numerous R&D Challenges

l  Developing good how-to guides is very difficult
–  Even for very simple EM scenarios

l  Developing tools to support how-to guides raises many
research challenges
–  Accuracy, scaling

l  Novel challenges for designing open-world systems

30

Examples of Current Research Problems

l  Profile the two tables to be matched,
 to understand different matching definitions

l  Normalize attribute values using machine and humans
l  Verify attribute values using crowdsourcing
l  Debug the blocking / labeling / matching process
l  Scale up blocking to 100s of millions of tuples
l  Apply Magellan template to string similarity joins
l  …

l  Our group is working on many of the above challenges

 31

Designing for an Open World

l  Magellan has been built as an open-world system
–  On top of Python data ecosystem

–  Relies on external systems to supply tools in visualization, mining,
IE, etc.

l  Raises many non-trivial challenges
–  Managing metadata

–  Designing data structures
–  Handling missing values

–  Package version incompatibilities
–  Data type mismatch

–  …
32

Metadata Management

33

command 1
command 2

data

metadata

A

B

A.ssn is a key

Magellan
System X

System Y

command x1

command x2

data

C

command y1
command y2

metadata
…

…

…

…

SQL queries
commands

data

metadata

A

B

A.ssn is a key

RDBMS

Closed-World Systems Open-World Systems

PyData ecosystem

Metadata Management: Naïve Solution

l  Rewrite the external commands to be metadata aware

l  Issues:
–  Need a lot of developer effort

§  Impractical given the large number of commands and packages
that users can use

–  Cannot force the user to wait till a developer has made an external

command metadata aware

34

Metadata Management: Current Solution

l  Design each command in Magellan to be metadata
aware

l  Each command at the start, checks for all the metadata
constraints that it requires to be true
–  E.g. primary key constraint must be satisfied to operate on Table A

–  Command will not proceed until all the required constraints are
satisfied

l  During its execution it will try to manage metadata
properly

l  If it encounters an invalid constraint, it will alert the user
–  But will continue execution as the constraint is not critical for the

correct execution

35

Designing Data Structures
l  At the heart of Magellan is a set of tables

–  Tuples to be matched are stored in two tables A and B

–  Intermediate and final results can also be stored in tables
–  Need to store metadata

–  Important to study how to implement tables

l  Design alternatives
–  Use Pandas data frame to store and process tables
–  Define a new class with multiple fields.

§  One field stores the data frame and other fields store metadata

–  Subclass Pandas data frame and add fields to store metadata

36

Alternative 1:
Use Pandas Data Frame

l  Pandas is a popular package to store and process
tables using data frame data structure

l  Naïve solution is to implement Magellan tables as

Pandas data frames

l  Issue: cannot store metadata

–  E.g. primary key of a table

37

Alternative 2:
Include Pandas Data Frame in Another Class
l  Define a new class, MTable and include a field for

Pandas data frame and other fields for metadata

l  Issues:

–  Makes it difficult for other packages operate on Magellan’s data

§  Existing packages are completely unaware of MTable
§  Commands in these packages cannot operate on MTable objects

directly

–  Need to redefine commands from other packages, a time-consuming
and brittle process

38

Alternative 3:
Inherit Pandas Data Frame

l  Subclass Pandas data frame to define a new class
MDataframe
–  Include fields to store metadata

l  Any existing command that knows data frames can
operate on MDataframe objects

l  Issue:
–  Commands may return inappropriate type of objects

§  Can be quite confusing to users

39

Current Solution:
Pandas Data Frame + Catalog

l  Store Magellan tables as Pandas data frames
–  Any existing Python package that manipulates data frames will work
–  Maximizes the chances of interoperating with other packages

seamlessly

l  Store metadata in a separate object, catalog
–  Similar to RDBMS
–  Stores metadata for each table in Magellan
–  Magellan commands which require metadata can probe the catalog

l  General principle
–  Use data structures that are most common to other systems to store

its data
–  When not possible, provide procedures to convert between its own

type and the ones commonly used by other systems 40

Current Status of Magellan
l  Has been in development since June 2015

–  ~18 months

–  1 main developer + 2 contributors

l  Contains 7 major new tools for how-to guides
l  Built on top of 11 different packages from PyData

ecosystem
–  E.g., Pandas, Scikit-learn, etc.

l  Exposes 104 commands to users
l  Codebase includes 87 Python files with ~14K lines of

Python code

41

Current Status of Magellan
l  Package is comprehensively tested

–  1136 unit test cases

–  90 performance test cases

l  Codebase is extensively documented
–  5K lines of comments

l  Most advanced and comprehensive open-source EM
system available today

l  Used extensively in education, science and at several
companies

42

Current Status of Magellan
l  Used as a teaching tool for data science classes at UW

–  CS 638: 83 students

–  CS 784: 44 students

l  Used in biomedicine domain to match drugs
–  2 accepted posters
–  Highlighted in CPCP 2017

l  Used at companies

43

l  Resulted in a research paper and a demonstration at
VLDB ’16

Experiments with 44 Students

44

l  Magellan: P = 91-100%, R = 64-100%, F1 = 78-100%
–  20 teams out of 24 achieved recall above 90%

l  Baseline: P = 56-100%, R = 37-100%, F1 = 56-99%

Experiments with 44 Students
l  Tools for pain points were highly effective
l  Debugging blockers

–  18 out of 24 teams used the debugger, for 5 iterations on average
–  Debugger helps in (a) cleaning data

 (b) finding correct blocker types/attributes
 (c) tuning blocker parameters
 (d) knowing when to stop

l  Debugging matchers
–  Teams performed 3 debugging iterations on average
–  Actions performed include (a) feature selection

 (b) data cleaning
 (c) parameter tuning

l  Students extensively used visualization, extraction,
cleaning, etc. (using PyData packages)

45

Magellan “in the Wild”
l  WalmartLabs

–  Helped improve a system already in production

l  Johnson Controls
–  Matched hundreds of thousands of suppliers for JCI
–  Precision above 95%, recall above 92% (across many data sets)

l  Marshfield Clinic
–  Matched 18M pairs of drugs
–  Precision: 99.18% Recall: 95.29%

l  Raised additional interesting challenges
–  Data can be very dirty, need far more cleaning tools

46

Novelties in the Current Work
l  Conceptual novelties:

–  Radically different from current EM systems
–  Conceptually novel architecture and methodology

§  Distinguish between development & production stages
§  Provide how-to guides
§  Identify pain points and develop supporting tools
§  Implement tools on top of the PyData ecosystem

l  Technical novelties:
–  Realizing such conceptual novelties raises many research problems
–  Many of them are pursued by members of our group
–  Provided preliminary solution for some of the problems

§  Metadata management, designing data structures

l  Practical impact:
–  Magellan has been released as an open-source tool
–  Used in education, science and companies

47

For More Details

l  http://www.vldb.org/pvldb/vol9/p1197-pkonda.pdf

l  Check out Magellan under
http://pages.cs.wisc.edu/~anhai/

l  GitHub: github.com/anhaidgroup

48

