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Entity Matching 

2 

Name City State 

Dave 
Smith Madison WI 

Joe Wilson San Jose CA 

Dan Smith Middleton WI 

Table A 

Name City State 

David D. Smith Madison WI 

Daniel W. 
Smith Middleton WI 

Table B 

l  Lot of work in this area over the past few decades 
l  Mainly focus on developing algorithms 
 



Need More Effort on Building EM Systems 
l  Truly critical to advance the field 

l  EM is engineering by nature 
l  Can’t keep developing EM algorithms in vacuum 

–  Akin to continuing to develop join algorithms without rest of RDBMS 

l  Must build systems to evaluate algorithms,  
integrate R&D efforts, make practical impacts 

l  As examples, RDBMSs and Big Data systems were 
critical to advancing their respective fields 

 
         But what kind of systems we should build, and how?  
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Current Research / System Building Agenda 
for Entity Matching 
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l  Two fundamental steps: blocking and matching 

Name City State 

Dave Smith Madison WI 

Joe Wilson San Jose CA 

Dan Smith Middleton WI 

a1  

Name City State 

David D. Smith Madison WI 

Daniel W. Smith Middleton WI 

b1 

b2 

block on 
state = state 

(a1, b1) 
(a1, b2) 
(a3, b1) 
(a3, b2) 

(a1, b1) + 
(a1, b2) - 
(a3, b1) - 
(a3, b2) + 

match 

Table A 

Table B 

a2  

a3  



Current Research / System Building Agenda 
for Entity Matching 

Focus on these two steps 
•  Develop algorithms  
•  Maximize accuracy, minimize cost 
Assume other steps are trivial 

Build stand-alone  
monolithic systems 
(e.g., in Java) 

Matcher 1      
Matcher 2  
… 

Blocker 1      
Blocker 2  
… 

Research 



This is Far from Enough  
for Handling EM in Practice 

l  EM in practice is significantly more complex 
–  A messy, iterative, multiple-step process 
–  Many steps perceived trivial are actually quite difficult to do 

l  Even if we let a human user be in charge of the whole 
EM process, he/she often doesn’t know what to do 

l  Will illustrate in the next few slides 
–  Using an example of applying supervised learning to do EM 
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How Is EM Done Today in Practice? 

 
l  Development stage  

–  finds an accurate workflow, using data samples 

l  Production stage 
–  executes workflow on entirety of data 
–  focuses on scalability 
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A 

1M tuples 

1M tuples block match  
(using supervised learning) 

B 



Development Stage 

yes 
no A 

B 

sample 
A’ 

B’ 

matcher 
V 

quality  
check  blocker 

X 

(-,-) 
(-,-) 
(-,-) 
(-,-) 
(-,-) 
 

(-,-) + 
(-,-) + 
(-,-) - 
(-,-) - 
(-,-) + 

 

A’ 

B’ 
blocker 

X 
Cx 

A’ 

B’ 
blocker 

Y 
Cy 

sample 
(-,-) 
(-,-) 
(-,-) 

(-,-) + 
(-,-) - 
(-,-) + 

cross-validate 
matcher U 

cross-validate 
matcher V 

0.89 F1 

0.93 F1 

label 

S 

G 

Select the best matcher: U, V Select the best blocker: X, Y 8 



Production Stage 
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(-,-) 
(-,-) 
(-,-) 
(-,-) 
(-,-) 
(-,-) 
(-,-) 
(-,-) 

(-,-) + 
(-,-) - 
(-,-) + 
(-,-) + 
(-,-) - 
(-,-) + 
(-,-) - 
(-,-) + 

A 

B 

blocker X matcher V 

Scaling, quality monitoring, exception handling, crash recovery, … 



Limitations of Current EM Systems 

l  Examined 33 systems 
–  18 non-commercial and 15 commercial ones 

1. Do not cover the entire EM workflow 
2. Hard to exploit a wide range of techniques 

–  Visualization, learning, crowdsourcing, etc.  

3. Do not distinguish development vs production stages 
4. Very little guidance for users 
5. Not designed from scratch for extendability 
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Characteristics of 18 Non-Commercial Systems 
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Name Affiliation Scenarios Blocking Matching Exploration
, cleaning 

User 
interface Language Open 

source Scaling 

Active Atlas University of Southern 
California 

Single table, two 
tables Hash-based ML-based (decision tree) No GUI, 

commandline Java No No 

BigMatch US Census Bureau Single table, two 
tables Attribute equivalence, rule-based Not supported No Commandline C No 

Yes (supports 
parallelism on a single 

node) 

D-Dupe University of 
Maryland 

Single table, two 
tables Attribute equivalence Relational clustering   GUI C# No No 

Dedoop University of Leipzig Single table Attribute equivalence, sorted 
neighborhood 

ML-based (decision tree, 
logistic regression, SVM etc.) No GUI Java No Yes (Hadoop) 

Dedupe DataMade Single table, two 
tables Canopy clustering, predicate-based Agglomerative hierarchical 

clustering-based Yes Commandline Python Yes Yes 

DuDe University of Potsdam Single table, two 
tables Sorted neighborhood Rule-based Yes Commandline Java Yes No 

Febrl Australian National 
University 

Single table, two 
tables 

Full index, blocking index, sorting 
index, suffixarray index, qgram 
index, canopy index, stringmap 

index 

Fellegi-Sunter, optimal 
threshold, k-means, 

FarthestFirst, SVM, TwoStep 
Yes GUI, 

commandline Python Yes No 

FRIL Emory University Single table, two 
tables 

Attribute equivalence, sorted 
neighborhood Expectation maximization Yes GUI Java Yes 

Yes (supports 
parallelism on a single 

node) 

MARLIN University of Texas at 
Austin   Canopy clustering ML-based (decision tree, SVM)         No 

Merge Toolbox University of 
Duisburg-Eissen 

Single table, two 
tables 

Attribute equivalence, canopy 
clustering 

Probabilistic, expectation 
maximization No GUI Java No No 

NADEEF Qatar Computing 
Research Institute 

Single table, two 
tables   Rule-based No GUI Java No No 

OYSTER University of Arkansas Single table, two 
tables Attribute equivalence Rule-based Yes Commandline Java Yes No 

pydedupe GPoulter (GitHub 
username) 

Single table, two 
tables Attribute equivalence ML-based, rule-based Yes Commandline Python Yes No 

RecordLinkage Institute of Medical 
Biostatistics, Germany 

Single table, two 
tables Attribute equivalence ML-based, probabilistic Yes Commandline R Yes No 

SERF Stanford University Single table   R-Swoosh algorithm No Commandline Java No No 

Silk Free University of 
Berlin RDF data   Rule-based Yes GUI Java Yes 

Yes (supports 
parallelism on a single 

node, Hadoop) 

TAILOR Purdue University Single table, two 
tables 

Attribute equivalence, sorted 
neighborhood 

Probabilisitic, clustering, 
hybrid, induction No GUI Java No No 

WHIRL William Cohen     Vector space model   Commandline C++ No No 



Characteristics of 15 Commercial Systems 
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Name  Purpose and how 
EM fits in

Supported EM 
scenarios

Main user 
interface

Distinction between 
dev. and prod. stages Language Scripting 

environment

DataMatch from Data 
Ladder

Data cleaning, data matching. EM 
forms the core of their solution Multiple tables GUI No   No

Dedupe.io Record linkage, deduplication. EM 
forms the core of their solution Single table, two tables Web-based No   No

FuzzyDupes Duplicate detection, data cleaning. 
EM forms the core of their solution Single table, two tables GUI No   No

Graphlab Create EM is offered as a service on top of 
their GraphLab platform

Single table, two tables, 
linking records to a KB Web-based   C++ Yes

IBM InfoSphere
Customer data analytics. EM is 

supported by a component 
(BigMatch) in the product

Single table, two tables Web-based   Java No

Informatica Data 
Quality

Improve data quality. EM forms a 
part of data quality pipeline Single table, two tables GUI     No

LinkageWiz Data matching and data cleaning. 
EM forms the core of their solution Single table, two tables GUI No   No

Oracle Enterprise Data 
Quality

Improve data quality. EM forms a 
part of data quality pipeline Single table, two tables GUI     No

Pentaho Data 
Integration

ETL, data integration. EM forms a 
part of ETL/data integration pipe 

line
Single table, two tables GUI   Java No

SAP Data Services
Improve data quality, data 

integration. EM forms a part of data 
integration pipeline

Single table, two tables GUI No    

SAS Data Quality Improve data quality. EM forms a 
part of data quality pipeline Single table, multiple tables Web-based     Limited support

Strategic Matching Data matching and data cleaning. 
EM forms the core of their solution Single table, two tables GUI No   No

Talend Data Quality Improve data quality. EM forms a 
part of data quality pipeline Single table, two tables GUI     No

Tamr Data curation. EM forms a part of 
data curation pipeline Multiple tables Web-based No Java No

Trillium Data Quality Improve data quality. EM forms a 
part of data quality pipeline Single table, multiple tables GUI     No



1. Do Not Cover the Entire EM Workflow 
l  Focus on blocking and matching 

–  Develop ever more complex algorithms 
–  Maximize accuracy and minimize costs 

l  Assume other steps are trivial 
–  In practice these steps raise serious challenges 
–  Example 1: sampling to obtain two smaller tables A’ and B’ 
–  Example 2: sample a set of tuple pairs to label 
–  Example 3: label the set 
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Development Stage 

yes 
no A 

B 

sample 
A’ 

B’ 

matcher 
V 

quality  
check  blocker 

X 

(-,-) 
(-,-) 
(-,-) 
(-,-) 
(-,-) 
 

(-,-) + 
(-,-) + 
(-,-) - 
(-,-) - 
(-,-) + 

 

A’ 

B’ 
blocker 

X 
Cx 

A’ 

B’ 
blocker 

Y 
Cy 

sample 
(-,-) 
(-,-) 
(-,-) 

(-,-) + 
(-,-) - 
(-,-) + 

cross-validate 
matcher U 

cross-validate 
matcher V 

0.89 F1 

0.93 F1 

label 

S 

G 

Select the best matcher Select the best blocker 14 



Example 1: Sampling Two Smaller Tables 
l  Tables A and B each has 1M tuples 

–  Very difficult to experiment with them directly in development stage 
–  Way too big, so too time consuming 

l  Need to sample smaller tables 
–  A’ from A, B’ from B, say 100K tuples for each table 

l  How to sample?  
–  Random sampling from A and B may result in very few matching 

tuple pairs across A’ and B’ 
–  How to resolve this?  
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Example 2: Take a Sample from the 
Candidate Set (for Subsequent Labeling) 

l  Let C be the set of candidate tuple pairs produced by 
applying a blocker to two tables A’ and B’ 

l  We need to take a sample S from C, label S, then use 
the labeled set to find the best matcher and train it 

l  How to take a sample S from C?  
–  Random sampling often does not work well if C contains few 

matches 
–  In such cases S contains no or very few matches 
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Example 3: Labeling the Sample 
l  This task is often divided between two or more people 

l  As they label their set of tuple pairs, they may follow 
very different notions of matching 
–  E.g., given two restaurants with same names, different locations 
–  A person may say “match”, another person may say “not a match” 

l  At the end, it becomes very difficult to reconcile 
different matching notions and relabel the sample 

l  This problem becomes even worse when we 
crowdsource the labeling process 
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An Illustrating Example  
for Distributed Labeling 
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(- , -) 
(- , -) 
(- , -) 
 … 
(- , -) 
(- , -) 
(- , -) 
(- , -) 
(- , -) 
(- , -) 
 

(- , -)  
(- , -)  
(- , -)  
 … 
(- , -)  
 

(- , -)  
(- , -)  
(- , -)  
 … 
(- , -)  
 

 ([Palmyra, 46 Main St],  [Palmyra, 15 Broadway]) - 

([KFC, 24 Main St],  [KFC, 41 Johnson Ave]) + 

Two restaurants match if they refer to the same real-world restaurant  

([Laura’s, 23 Farewell Str],  [Laura, 23 Farewell]) + 



l  EM steps often exploit many techniques 
–  SQL querying, keyword search, learning, visualization, information 

extraction, outlier detection, crowdsourcing, etc.  

l  Difficult to incorporate all  
into a single system 
 

l  Difficult to move data  
repeatedly across systems 
–  An EM system, a visualization system,  

an extraction system, etc.  

l  Problem: most systems are stand-alone monoliths,  
not designed to play well with other systems 

2. Hard to Exploit a Wide Range of Techniques 
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3. Do Not Distinguish Dev vs Prod Stages 

l  Current systems 
–  Provide a set of blockers / matchers 
–  Provide a way to specify / optimize / execute workflows 
–  Pay very little attention to the development stage 
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4. Little Guidance for Users 
l  Suppose user wants at least 95% precision & 80% recall 

l  How to start? With rule-based EM first?  
Learning-based EM first?  

l  What step to take next?  

l  How to do a step?  
–  E.g., how to label a sample? 

l  What to do if after much effort,  
still hasn’t reached desired accuracy? 
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5. Not Designed from Scratch for Extendability 

l  Can we build a single system that solves all EM problems? 
–  No  

l  In practice, users often want to 
–  Customize, e.g., to a particular domain 
–  Extend, e.g., with latest technical advances 
–  Patch, e.g., writing code to implement  

lacking functionalities 

l  Users also want interactive  
scripting environments 
–  For rapid prototyping, experimentation, iteration 

l  Most current EM systems  
–  Are not designed so that users can easily customize, extend, patch 
–  Are not situated in interactive scripting environments  
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Summary 

Many serious limitations: 

1. Do not cover the entire EM workflow 
2. Hard to exploit a wide range of techniques  
3. Do not distinguish development vs production stages 
4. Very little guidance for users 
5. Not designed from scratch for extendability 
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Our Solution: The Magellan Approach 

l  Define a clear scope 
–  Each system targets a set of EM scenarios and power users 
 

l  Solve the development stage 
–  Develop a how-to guide 

§  Helps users discover accurate workflow 
§  Must cover all steps 
§  Tells users what to do, step by step 

–  Develop tools for pain points in the guide 
§  On top of PyData ecosystem 

 

l  Solve the production stage in a similar way 
–  But focus on scalability, crash recovery, etc.  
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How-to Guide/Tools for Development Stage 

yes 
no A 

B 

sample 
A’ 

B’ 

matcher 
V 

quality  
check  blocker 

X 

(-,-) 
(-,-) 
(-,-) 
(-,-) 
(-,-) 
 

(-,-) + 
(-,-) + 
(-,-) - 
(-,-) - 
(-,-) + 

 

A’ 

B’ 
blocker 

X 
Cx 

A’ 

B’ 
blocker 

Y 
Cy 

sample 
(-,-) 
(-,-) 
(-,-) 

(-,-) + 
(-,-) - 
(-,-) + 

cross-validate 
matcher U 

cross-validate 
matcher V 

0.89 F1 

0.93 F1 

label 

S 

G 

Select the best matcher Select the best blocker 25 



Example How-to Guide for Matching 
Tables Using Supervised Learning 
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1. Load tables A and B into Magellan. Downsample if necessary.

2. Perform blocking on the tables to obtain a set of
candidate tuple pairs C.

3. Take a random sample S from C and label pairs in S as
matched / non-matched. 

4. Create a set of features then convert S into a set of feature vectors H.
Split H into a development set I and an evaluation set J.

5. Repeat until out of debugging ideas or out of time:

(a) Perform cross validation on I to select the best matcher.
Let this matcher be X.

(b) Debug X using I. This may change the matcher X, the data, labels,
and the set of features, thus changing I and J.

6. Let Y be the best matcher obtained in Step 5. Train Y on I,
then apply to J and report the matching accuracy on J.



How-to Guide/Tools for Development Stage 
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Users want step-by-step guide on how to take a sample then label it 

Tool to highlight 
possible matching 
categories 

Tool to 
debug labels 

Tool to help  
revise labels 



Build Tools on the PyData Ecosystem 
l  Key observation 

–  Development stage does a lot of data analysis 
§  E.g., analyzing data to discover EM matching rules 
§  Often requires cleaning, visualizing, finding outliers, etc.  

–  Very hard to incorporate all such techniques into a single EM system 
–  Better to build on top of an open-source data ecosystem 

l   Two major current ecosystems 
–  Python and R 

l  PyData ecosystem 
–  Used extensively by data scientists 
–  > 100K packages (in PyPI) 
–  Data analysis stack / big data stack 
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The Magellan Architecture 

Development Stage 
How-to guide 

 
Tools for pain points 
(as Python commands) 

 
Data samples 

Python Interactive Environment 
 Script Language 

Data Analysis Stack 
pandas,  scikit-learn, matplotlib, 

numpy, scipy, pyqt, seaborn, 
…   

Big Data Stack 
PySpark, mrjob, Pydoop, 

pp, dispy, 
 …   

Power  
Users 

EM 
Workflow 

PyData 
eco 

system 

Production Stage 
How-to guide 

 
Tools for pain points 
(as Python commands) 

 
Original data 

Match  
two tables 
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Raises Numerous R&D Challenges 

l  Developing good how-to guides is very difficult 
–  Even for very simple EM scenarios 

l  Developing tools to support how-to guides raises many 
research challenges 
–  Accuracy, scaling 

l  Novel challenges for designing open-world systems 
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Examples of Current Research Problems 

l  Profile the two tables to be matched,  
                  to understand different matching definitions 

l  Normalize attribute values using machine and humans  
l  Verify attribute values using crowdsourcing 
l  Debug the blocking / labeling / matching process 
l  Scale up blocking to 100s of millions of tuples 
l  Apply Magellan template to string similarity joins 
l  … 

l  Our group is working on many of the above challenges 
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Designing for an Open World 

l  Magellan has been built as an open-world system 
–  On  top of Python data ecosystem 

–  Relies on external systems to supply tools  in visualization, mining, 
IE, etc. 

 

l  Raises many non-trivial challenges 
–  Managing metadata 

–  Designing data structures 
–  Handling missing values 

–  Package version incompatibilities 
–  Data type mismatch 

–  … 
32 



Metadata Management 

33 

command 1 
command 2 

data 

metadata 

A 

B 

A.ssn is a key 

Magellan 
System X  

System Y  

command x1 

command x2 

data 

C 

command y1 
command y2 

metadata 
… 

… 

… 

… 

SQL queries 
commands 

data 

metadata 

A 

B 

A.ssn is a key 

RDBMS 

Closed-World Systems  Open-World Systems  

PyData ecosystem 



Metadata Management: Naïve Solution 

l  Rewrite the external commands to be metadata aware 

l  Issues: 
–  Need a lot of developer effort 

§  Impractical given the large number of commands and packages 
that users can use 

 
–  Cannot force the user to wait till a developer has made an external 

command metadata aware 
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Metadata Management: Current Solution 

l  Design each command in Magellan to be metadata 
aware 

l  Each command at the start, checks for all the metadata 
constraints that it requires to be true 
–  E.g. primary key constraint must be satisfied to operate on Table A 

–  Command will not proceed until all the required constraints are 
satisfied 

l  During its execution it will try to manage metadata 
properly 

l  If it encounters an invalid constraint, it will alert the user 
–  But will continue execution as the constraint is not critical for the 

correct execution 
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Designing Data Structures 
l  At the heart of Magellan is a set of tables 

–  Tuples to be matched are stored in two tables A and B 

–  Intermediate and final results can also be stored in tables 
–  Need to store metadata  

–  Important to study how to implement tables 

l  Design alternatives 
–  Use Pandas data frame to store and process tables 
–  Define a new class with multiple fields.  

§  One field stores the data frame and other fields store metadata 

–  Subclass Pandas data frame and add fields to store metadata 
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Alternative 1:  
Use Pandas Data Frame 

l  Pandas is a popular package to store and process 
tables using data frame data structure 

 
l  Naïve solution is to implement Magellan tables as 

Pandas data frames 
 
l  Issue: cannot store metadata 

–  E.g. primary key of a table 
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Alternative 2:  
Include Pandas Data Frame in Another Class 
l  Define a new class, MTable and include a field for 

Pandas data frame and other fields for metadata 
 
l  Issues: 

–  Makes it difficult for other packages operate on Magellan’s data 

§  Existing packages are completely unaware of MTable 
§  Commands in these packages cannot operate on MTable objects 

directly 

–  Need to redefine commands from other packages, a time-consuming 
and brittle process 
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Alternative 3:  
Inherit Pandas Data Frame 

l  Subclass Pandas data frame to define a new class 
MDataframe 
–  Include fields to store metadata 

l  Any existing command that knows data frames can 
operate on MDataframe objects 

l  Issue: 
–  Commands may return inappropriate type of objects 

§  Can be quite confusing to users 
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Current Solution:  
Pandas Data Frame + Catalog 

l  Store Magellan tables as Pandas data frames 
–  Any existing Python package that manipulates data frames will work 
–  Maximizes the chances of interoperating with other packages 

seamlessly 

l  Store metadata in a separate object, catalog 
–  Similar to RDBMS 
–  Stores metadata for each table in Magellan 
–  Magellan commands which require metadata can probe the catalog 

l  General principle 
–  Use data structures that are most common to other systems to store 

its data 
–  When not possible, provide procedures to convert between its own 

type and the ones commonly used by other systems 40 



Current Status of Magellan 
l  Has been in development since June 2015 

–  ~18 months 

–  1 main developer + 2 contributors 

l  Contains 7 major new tools for how-to guides 
l  Built on top of 11 different packages from PyData 

ecosystem 
–  E.g., Pandas, Scikit-learn, etc. 

l  Exposes 104 commands to users 
l  Codebase includes 87 Python files with ~14K lines of 

Python code 
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Current Status of Magellan 
l  Package is comprehensively tested 

–  1136 unit test cases 

–  90 performance test cases 

l  Codebase is extensively documented 
–  5K lines of comments 

l  Most advanced and comprehensive open-source EM 
system available today 

l  Used extensively in education, science and at several 
companies 
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Current Status of Magellan 
l  Used as a teaching tool for data science classes at UW 

–  CS 638: 83 students 

–  CS 784: 44 students 

l  Used in biomedicine domain to match drugs 
–  2 accepted posters 
–  Highlighted in CPCP 2017 

l  Used at companies 
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l  Resulted in a research paper and a demonstration at 
VLDB ’16  

 



Experiments with 44 Students 
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l  Magellan:  P = 91-100%, R = 64-100%, F1 = 78-100% 
–  20 teams out of 24 achieved recall above 90% 

 

l  Baseline:   P = 56-100%, R = 37-100%, F1 = 56-99% 



Experiments with 44 Students 
l  Tools for pain points were highly effective 
l  Debugging blockers 

–  18 out of 24 teams used the debugger, for 5 iterations on average 
–  Debugger helps in  (a) cleaning data 

                               (b) finding correct blocker types/attributes 
                               (c) tuning blocker parameters 
                               (d) knowing when to stop 

l  Debugging matchers 
–  Teams performed 3 debugging iterations on average 
–  Actions performed include (a) feature selection 

                      (b) data cleaning 
                                       (c) parameter tuning 

l  Students extensively used visualization, extraction, 
cleaning, etc. (using PyData packages) 
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Magellan “in the Wild” 
l  WalmartLabs 

–  Helped improve a system already in production 

l  Johnson Controls 
–  Matched hundreds of thousands of suppliers for JCI 
–  Precision above 95%, recall above 92% (across many data sets) 

l  Marshfield Clinic 
–  Matched 18M pairs of drugs  
–  Precision: 99.18% Recall: 95.29%  

l  Raised additional interesting challenges 
–  Data can be very dirty, need far more cleaning tools 
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Novelties in the Current Work 
l  Conceptual novelties: 

–  Radically different from current EM systems 
–  Conceptually novel architecture and methodology 

§  Distinguish between development & production stages 
§  Provide how-to guides 
§  Identify pain points and develop supporting tools 
§  Implement tools on top of the PyData ecosystem 

l  Technical novelties: 
–  Realizing such conceptual novelties raises many research problems 
–  Many of them are pursued by members of our group 
–  Provided preliminary solution for some of the problems 

§  Metadata management, designing data structures 

l  Practical impact: 
–  Magellan has been released as an open-source tool 
–  Used in education, science and companies 
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For More Details 

l  http://www.vldb.org/pvldb/vol9/p1197-pkonda.pdf 

l  Check out Magellan under 
http://pages.cs.wisc.edu/~anhai/ 

 
l  GitHub: github.com/anhaidgroup 
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