SLiMFast: Guaranteed Results for Data Fusion and Source Reliability

Theodoros Rekatsinas
@thodrek

joint work with Manas Joglekar, Hector Garcia-Molina, Aditya Parameswaran, and Christopher Ré
Reliable data = value

Today’s take-away:
How to detect inaccurate data and hoax sources
Examples of inaccurate data: information extraction
Examples of inaccurate data: information extraction

king of the united states

About 293,000,000 results (0.99 seconds)

United States of America / King

Barack Obama

Ask Google who is the [King Of United States] and Google will inform you that it is Barack Obama, the current President of the United States. The Google Answer is pulled from Breitbart, a story they posted five days ago named All Hail King Barack Obama, Emperor Of The United States Of America! Nov 25, 2014

According To Google, Barack Obama Is King Of The United States
searchengineland.com/according-google-barack-obama-king-united-states-209733

Barack Obama
44th U.S. President
Examples of inaccurate data: human annotations

“Is it a Dog or a Wolf?”
Examples of inaccurate data: alternative facts
Today’s Agenda

Data Fusion: A quick recap

SLiMFast: Use features to describe sources

SLiMFast’s Optimizer: Don’t worry about ML algorithms
Data fusion

We want to find the true value of noisy facts

“Ok Google, is Obama a king or a president?”

United States of America / King

Barack Obama

44th U.S. President
Data fusion

We want to find the true value of noisy facts

“Ok Google, is Obama a king or a president?”

Where does data fusion come up?

Knowledge base construction
Crowdsourcing
Social sensing
Example: personalized medicine

Goal: A disease-gene knowledge base to advance personalized medicine

Knowledge Base Construction (KBC)

25 million articles

Disease → Gene variant → Mutation → Gene → Disease
Problems in knowledge base construction

Extractions

<table>
<thead>
<tr>
<th>Source</th>
<th>Disease</th>
<th>Gene</th>
<th>CausedBy</th>
</tr>
</thead>
</table>

Genetic Heterogeneity of Li-Fraumeni Syndrome

A second form of Li-Fraumeni syndrome (LFS2; 609265) is caused by mutation in the CHEK2 gene (604373), and an LFS locus (LFS3; 609266) has been mapped to chromosome 1q23.

Source: OMIM
Problems in knowledge base construction

Extractions

<table>
<thead>
<tr>
<th>Source</th>
<th>Disease</th>
<th>Gene</th>
<th>CausedBy</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMIM</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Genetic Heterogeneity of Li-Fraumeni Syndrome

A second form of Li-Fraumeni syndrome (LFS2; 609265) is caused by mutation in the CHEK2 gene (604373), and an LFS locus (LFS3; 609266) has been mapped to chromosome 1q23.

Source: OMIM
Problems in knowledge base construction

Extractions

<table>
<thead>
<tr>
<th>Source</th>
<th>Disease</th>
<th>Gene</th>
<th>CausedBy</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMIM</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>Yes</td>
</tr>
<tr>
<td>Paper</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>No</td>
</tr>
</tbody>
</table>

Genetic Heterogeneity of Li-Fraumeni Syndrome

A second form of Li-Fraumeni syndrome (LFS2; 609265) is caused by mutation in the CHEK2 gene (604373), and an LFS locus (LFS3; 609266) has been mapped to chromosome 1q23.

Increasing evidence that germline mutations in CHEK2 do not cause Li-Fraumeni syndrome†

Nayanta Sodha, Richard S. Houlston, Sarah Bullock, Martin A. Yuille, Carol Chu, Gwen Turner, Rosalind A. Eeles

First published: 19 November 2002 Full publication history
Problems in knowledge base construction

Conflicts!!!! Now what?

Extractions

<table>
<thead>
<tr>
<th>Source</th>
<th>Disease</th>
<th>Gene</th>
<th>CausedBy</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMIM</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>Yes</td>
</tr>
<tr>
<td>Paper</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>No</td>
</tr>
</tbody>
</table>

Genetic Heterogeneity of Li-Fraumeni Syndrome

A second form of Li-Fraumeni syndrome (LFS2; 609265) is caused by mutation in the CHEK2 gene (604373), and an LFS locus (LFS3; 609266) has been mapped to chromosome 1q23.

Increasing evidence that germline mutations in CHEK2 do not cause Li-Fraumeni syndrome

Nayanta Sodha, Richard S. Houlston, Sarah Bullock, Martin A. Yuille, Carol Chu, Gwen Turner, Rosalind A. Eeles

First published: 19 November 2002 Full publication history
Basic data fusion setup

Source observations

<table>
<thead>
<tr>
<th>Source</th>
<th>Disease</th>
<th>Gene</th>
<th>CausedBy</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMIM</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>Yes</td>
</tr>
<tr>
<td>Paper</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>No</td>
</tr>
</tbody>
</table>

Knowledge base

<table>
<thead>
<tr>
<th>CausedBy</th>
<th>Disease</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Basic data fusion setup

Source observations

<table>
<thead>
<tr>
<th>Source</th>
<th>Disease</th>
<th>Gene</th>
<th>CausedBy</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMIM</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>Yes</td>
</tr>
<tr>
<td>Paper</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>No</td>
</tr>
</tbody>
</table>

Knowledge base

<table>
<thead>
<tr>
<th>CausedBy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease</td>
</tr>
<tr>
<td>Gene</td>
</tr>
</tbody>
</table>
Basic data fusion setup

Source observations

<table>
<thead>
<tr>
<th>Source</th>
<th>Disease</th>
<th>Gene</th>
<th>CausedBy</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMIM</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>Yes</td>
</tr>
<tr>
<td>Paper</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>No</td>
</tr>
</tbody>
</table>

Knowledge base

<table>
<thead>
<tr>
<th>CausedBy</th>
<th>Disease</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Object: Source reports a value for Object
Basic data fusion setup

Source observations

<table>
<thead>
<tr>
<th>Source</th>
<th>Disease</th>
<th>Gene</th>
<th>CausedBy</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMIM</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>Yes</td>
</tr>
<tr>
<td>Paper</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>No</td>
</tr>
</tbody>
</table>

Conflict: Source reports a value for Object

Knowledge base

<table>
<thead>
<tr>
<th>Disease</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Basic data fusion setup

Source observations

<table>
<thead>
<tr>
<th>Source</th>
<th>Disease</th>
<th>Gene</th>
<th>CausedBy</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMIM</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>Yes</td>
</tr>
<tr>
<td>Paper</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>No</td>
</tr>
</tbody>
</table>

Knowledge base

<table>
<thead>
<tr>
<th>Disease</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
</tr>
</tbody>
</table>

Object

- Source reports a value for Object
- Object’s true value

Conflict

- No
- Yes
Basic data fusion setup

Source observations

<table>
<thead>
<tr>
<th>Source</th>
<th>Disease</th>
<th>Gene</th>
<th>CausedBy</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMIM</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>Yes</td>
</tr>
<tr>
<td>Paper</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>No</td>
</tr>
</tbody>
</table>

Knowledge base

<table>
<thead>
<tr>
<th>Disease</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
</tr>
</tbody>
</table>

Conflict

Source reports a value for Object

Object’s true value

How can we find the true value for each object?
Existing solutions to data fusion

- **Majority voting**
- **Probabilistic models**

\[\text{Posterior} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Evidence}} \]
Existing solutions to data fusion

Posterior = \frac{\text{Likelihood} \times \text{Prior}}{\text{Evidence}}

Probabilistic models

Supervised

Un(semi-)supervised
Estimating the unknown true value for objects

Genomics data: 2.7k sources (articles), 571 objects (gene-disease), 4 domain features (year, citation, author, journal)
Genomics data: 2.7k sources (articles), 571 objects (gene-disease), 4 domain features (year, citation, author, journal)
Estimating the unknown true value for objects

Genomics data: 2.7k sources (articles), 571 objects (gene-disease), 4 domain features (year, citation, author, journal)

SLiMFast is 25% more accurate
Step 1: Use probabilistic models to model source reliability

Step 2: Use domain-specific features to describe source accuracy

Step 3: Analyze the given data fusion instance to learn the model parameters
Probabilistic models for data fusion

Source observations

<table>
<thead>
<tr>
<th>Source</th>
<th>Disease</th>
<th>Gene</th>
<th>CausedBy</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMIM</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>Yes</td>
</tr>
<tr>
<td>Paper</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>No</td>
</tr>
</tbody>
</table>

Knowledge base

<table>
<thead>
<tr>
<th>CausedBy</th>
<th>Disease</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
</tr>
</tbody>
</table>

20
Source observations

<table>
<thead>
<tr>
<th>Source</th>
<th>Disease</th>
<th>Gene</th>
<th>CausedBy</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMIM</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>Yes</td>
</tr>
<tr>
<td>Paper</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>No</td>
</tr>
</tbody>
</table>

Knowledge base

<table>
<thead>
<tr>
<th>CausedBy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Li-Fraumeni Syndrome</td>
</tr>
</tbody>
</table>
Probabilistic models for data fusion

Source observations

<table>
<thead>
<tr>
<th>Source</th>
<th>Disease</th>
<th>Gene</th>
<th>CausedBy</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMIM</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>Yes</td>
</tr>
<tr>
<td>Paper</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>No</td>
</tr>
</tbody>
</table>

Knowledge base

<table>
<thead>
<tr>
<th>CausedBy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Li-Fraumeni Syndrome</td>
</tr>
</tbody>
</table>
Probabilistic models for data fusion

Source observations

<table>
<thead>
<tr>
<th>Source</th>
<th>Disease</th>
<th>Gene</th>
<th>CausedBy</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMIM</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>Yes</td>
</tr>
<tr>
<td>Paper</td>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td>No</td>
</tr>
</tbody>
</table>

Knowledge base

<table>
<thead>
<tr>
<th>Disease</th>
<th>Gene</th>
<th>CausedBy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li-Fraumeni Syndrome</td>
<td>CHEK2</td>
<td></td>
</tr>
</tbody>
</table>

\[
\Pr(\text{Object} = +1 | \text{Sources}) = \frac{1}{Z} \exp \sum_{S \in \text{Sources}} \sigma_S \cdot I[S \text{ votes Object} = +1]
\]

Normalizing constant (valid distribution)

\[
\sigma_S = \log \left(\frac{\text{Accuracy of Source } S}{1 - \text{Accuracy of Source } S} \right)
\]

Accuracy = Probability that a source is correct

Reliability scores (model parameters)

Indicator function
Supervised data fusion

\[
Pr(\text{Object} = +1|\text{Sources}) = \frac{1}{Z} \exp \sum_{S \in \text{Sources}} \sigma_S \cdot I[S \text{ votes } \text{Object} = +1]
\]

In many cases corresponds to logistic regression

Boolean features

\[
I[S \text{ votes } \text{Object} = +1]
\]
Supervised data fusion

\[\Pr(\text{Object} = +1|\text{Sources}) = \frac{1}{Z} \exp \sum_{S \in \text{Sources}} \sigma_S \cdot I[S \text{ votes Object} = +1] \]

In many cases corresponds to logistic regression

Boolean features
\[I[S \text{ votes Object} = +1] \]

No strong assumptions on:

1. independence of sources
2. accuracy being more than 0.5
3. number of observations per object
Supervised data fusion

\[
\Pr(\text{Object } = +1 | \text{Sources}) = \frac{1}{Z} \exp \sum_{S \in \text{Sources}} \sigma_S \cdot I[S \text{ votes Object } = +1]
\]

In many cases corresponds to logistic regression

Boolean features

\[I[S \text{ votes Object } = +1]\]

No strong assumptions on:

1. independence of sources
2. accuracy being more than 0.5
3. number of observations per object

Simple trained model over known objects.

Highly scalable training algorithms

(e.g., stochastic gradient descent).
How much data do we need to train the model?

Theorem: *We need a number of labeled examples proportional to the number of Sources.*

[On Discriminative versus Generative Classifiers, Ng & Jordan, 2001]

But the number of sources can be in the thousands or millions and training data is limited!!!
The challenge of training data

How can we make logistic regression practical?

\[
\Pr(\text{Object} = +1 | \text{Sources}) = \frac{1}{Z} \exp \sum_{S \in \text{Sources}} \sigma_S \cdot I[S \text{ votes Object} = +1]
\]

Challenge: Limited labeled examples
The challenge of training data

How can we make logistic regression practical?

\[
\Pr(\text{Object} = +1 | \text{Sources}) = \frac{1}{Z} \exp \sum_{S \in \text{Sources}} \sigma_S \cdot I[S \text{ votes Object} = +1]
\]

Challenge: Limited labeled examples

Limit the informative parameters of the model by using domain knowledge
The challenge of training data

How can we make logistic regression practical?

\[
Pr(\text{Object} = +1|\text{Sources}) = \frac{1}{Z} \exp \sum_{S \in \text{Sources}} \sigma_S \cdot I[S \text{ votes Object} = +1]
\]

Challenge: Limited labeled examples

Limit the informative parameters of the model by using domain knowledge

Key Idea: Sources have (domain specific) features that are indicative of their accuracy
Source-accuracy features

(i) citations over time, (ii) journal, (iii) experimental methodology (e.g., population size), (iv) year

(i) newly registered similar to existing domain, (ii) traffic statistics, (iii) text quality (e.g., misspelled words, grammatical errors), (iv) sentiment analysis

(i) avg. time per task, (ii) number of tasks, (iii) market used
SLiMFast’s data fusion model

\[\sigma_S = \log \left(\frac{\text{Accuracy of Source } S}{1 - \text{Accuracy of Source } S} \right) \]

Key Idea: Sources have (domain specific) features that are indicative of their accuracy
SLiMFast’s data fusion model

\[
\sigma_S = \log \left(\frac{\text{Accuracy of Source } S}{1 - \text{Accuracy of Source } S} \right)
\]

Key Idea: Sources have (domain specific) features that are indicative of their accuracy

\[
\text{Accuracy of Source} = \text{Logistic Function} \left(\sum_{f \in \text{Features}} W_f \cdot \text{Source Value for Feature } f \right)
\]
SLiMFast’s data fusion model

\[\sigma_S = \log \left(\frac{\text{Accuracy of Source } S}{1 - \text{Accuracy of Source } S} \right) \]

Key Idea: Sources have (domain specific) features that are indicative of their accuracy

\[
\Pr(\text{Object} = +1|\text{Sources}) = \frac{1}{Z} \exp \left(\sum_{S \in \text{Sources}} \sum_{f \in \text{Features}} W_f \cdot \text{Value}[f, S] \cdot I[S \text{ votes Object } = +1] \right)
\]

- Normalizing constant (valid distribution)
- Weighted features to capture accuracy
- Indicator function
SLiMFast’s data fusion model

\[
\sigma_S = \log \left(\frac{\text{Accuracy of Source } S}{1-\text{Accuracy of Source } S} \right)
\]

Key Idea: Sources have (domain specific) features that are indicative of their accuracy

\[
\text{Accuracy of Source} = \text{Logistic Function} \left(\sum_{f \in \text{Features}} W_f \cdot \text{Source Value for Feature } f \right)
\]

\[
\Pr(\text{Object} = +1 | \text{Sources}) = \frac{1}{Z} \exp \sum_{S \in \text{Sources}} \sum_{f \in \text{Features}} W_f \cdot \text{Value}[f, S] \cdot I[S \text{ votes Object} = +1]
\]

Still logistic regression but with **significantly fewer** parameters!
SLiMFast’s guarantees for data fusion

Theorem. The error for both the estimated object values and the estimated source accuracies is proportional to $\sqrt{|K|/|G|}$ where $|G|$ is the number of labeled examples for objects and $|K|$ the number of features in SLiMFast.

We only need a number of labeled examples proportional to the number of Features!

Few labeled examples are enough in practice.
SLiMFast in practice

Testing Accuracy

SLiMFast is 25% more accurate

Percentage of data used for training
- SLiMFast
- LogReg
- ACCU
- Voting

Genomics data: 2.7k sources (articles), 571 objects (gene-disease), 4 domain features (year, citation, author, journal)
SLiMFast in practice

SLiMFast is more effective with small amounts of training data due to the reduced dimensions of the model.

Genomics data: 2.7k sources (articles), 571 objects (gene-disease), 4 domain features (year, citation, author, journal)
SLiMFast achieves state-of-the-art performance

SLiMFast yields accuracy improvements of up to **50%** for identifying the true value of objects and up to **10x lower error in source accuracy estimates**.

Financial data

Demonstration monitoring in the news

Crowdsourcing
Step 1: Use probabilistic models to model source reliability

Step 2: Use domain-specific features to describe source accuracy

Step 3: Analyze the given data fusion instance to learn the model parameters
Today’s Agenda

Data Fusion: A quick recap

SLiMFast: Use features to describe sources

- **Step 1:** Use probabilistic models to model source reliability
- **Step 2:** Use domain-specific features to describe source accuracy
- **Step 3:** Analyze the given data fusion instance to learn the model parameters

SLiMFast’s Optimizer: Don’t worry about ML algorithms
Beyond labeled data

In many cases labeled examples can be very limited!

How can we use SLiMFast when there is not enough training data to use supervised learning (ERM)?
Beyond labeled data

In many cases labeled examples can be very limited!

How can we use SLiMFast when there is not enough training data to use supervised learning (ERM)?

In SLiMFast we can also use unsupervised learning (e.g., EM).

Expectation Maximization
- Initialize Source accuracies
- 1. infer Object’s true value
- 2. adjust Src Accuracies
- repeat
Beyond labeled data

In many cases labeled examples can be very limited!

How can we use SLiMFast when there is not enough training data to use supervised learning (ERM)?

In SLiMFast we can also use unsupervised learning (e.g., EM).

Expectation Maximization

1. Infer Object’s true value
2. Adjust Src Accuracies
 repeat

Thm: We show that EM works only when there are many observations per object and when sources have an avg. accuracy $p > 0.5$
Beyond labeled data

In many cases labeled examples can be very limited!

How can we use SLiMFast when there is not enough training data to use supervised learning (ERM)?

In SLiMFast we can also use unsupervised learning (e.g., EM).

Expectation Maximization

- Initialize Source accuracies
- 1. infer Object’s true value
- 2. adjust Src Accuracies
- repeat

Choice: Supervised or unsupervised learning?
Our theoretical analysis says…

Supervised learning affected by (i) amount of labeled data
Our theoretical analysis says…

Supervised learning affected by (i) amount of labeled data

Unsupervised learning affected by (ii) observation density and (iii) avg. src. accuracy

Avg. Src. Accuracy = 0.7, Density = 0.01

Avg. Acc = 0.6, Tr. Data = 400 src. obs.

Density = 0.005, Tr. Data = 250 obs (5%)
The SLiMFast optimizer

Goal: Maximize accuracy of estimated true values of Objects

Choice: Supervised or unsupervised learning?

Labeled examples | Observations | Avg. src. accuracy
The SLiMFast optimizer

Goal: Maximize accuracy of estimated true values of Objects

Choice: Supervised or unsupervised learning?

- **Labeled examples**
- **Observations**
- **Avg. src. accuracy**

Our theoretical analysis dictates that

\[G = \text{number of labeled examples} \]

IF \(G \gg \text{Features} \)** use *supervised learning*.**
The SLiMFast optimizer

Goal: Maximize accuracy of estimated true values of Objects

Choice: Supervised or unsupervised learning?

<table>
<thead>
<tr>
<th>Labeled examples</th>
<th>Observations</th>
<th>Avg. src. accuracy</th>
</tr>
</thead>
</table>

Our theoretical analysis dictates that

\[G = \text{number of labeled examples} \]

IF \(G >> \text{Features} \) use *supervised learning*.

What if \(G >> \text{Features} \) *does not hold*?
The SLiMFast optimizer

Goal: Maximize accuracy of estimated true values of Objects

Choice: Supervised or unsupervised learning?

| Labeled examples | Observations | Avg. src. accuracy |

IF $G < \text{Features}$:

Each algorithm affected by different instance properties. How can we compare the two?
Goal: Maximize accuracy of estimated true values of Objects

Choice: Supervised or unsupervised learning?

<table>
<thead>
<tr>
<th>Labeled examples</th>
<th>Observations</th>
<th>Avg. src. accuracy</th>
</tr>
</thead>
</table>

IF G < Features:

Each algorithm affected by different instance properties. How can we compare the two?

Idea: Compare **bits of information** available to:

1. supervised learning via labeled examples
2. unsupervised learning via observations and src. accuracy
If we are given the label for an Object the entropy of the corresponding random variable drops to zero.

From each labeled example we gain one bit of information

\[
\text{Bits} = \text{number of labeled examples}
\]
How many bits of information are available in source observations?
How many bits of information are available in source observations?

Expectation Maximization

Initialize Source accuracies
1. infer Object’s true value
2. adjust Src Accuracies
 repeat
Idea:

Estimate the expected number of correct object values after step 1

Bits of information: Unsupervised learning

How many bits of information are available in source observations?

Expectation Maximization

Initialize Source accuracies

1. infer Object’s true value
2. adjust Src Accuracies
repeat

Idea: Estimate the expected number of correct object values after step 1
How many bits of information are available in source observations?

Expectation Maximization
Initialize Source accuracies
1. infer Object’s true value
2. adjust Src Accuracies
repeat

Idea: Estimate the expected number of correct object values after step 1

Use majority voting to approximate the bits of information available to unsupervised learning
For each object:

1. **Compute**
 \[p = \Pr(\text{MV gives the correct value}) \]

m is the number of sources with observations for Object

Ex.: Binomial for +1,-1 values
\[p = 1 - \sum_{i=0}^{m/2} \binom{m}{i} A^i (1 - A)^{m-i} \]

2. **Estimate bits of information**

 Bits = 1 - Entropy(p)

Take into account density and average source accuracy.
Average source accuracy

Source agreement rate

\[X = \]

\[X_{i,j} = \frac{\text{Agreements} - \text{Disagreements between Sources } i \text{ and } j}{\text{Overlap between Sources } i \text{ and } j} \]

The agreement rate depends on the source accuracies. Assumptions: (i) independence, (ii) same accuracy

\[X_{i,j} = A^2 + (1 - A)^2 - 2A(1 - A) \]

Estimate average accuracy \(A \) using the information in the entries of matrix \(X \)
The SLiMFast optimizer

\[G = \text{number of labeled examples} \]

IF \(G \gg \) Features use \textit{supervised learning}.

Otherwise:

\[U = \text{bits of information for unsupervised learning} \]

IF \(G > U \) use \textit{supervised learning} ELSE \textit{unsupervised learning}.
The SLiMFast optimizer

\[G = \text{number of labeled examples} \]

IF \(G \gg \) Features use \textit{supervised learning}.

Otherwise:

\[U = \text{bits of information for unsupervised learning} \]

IF \(G > U \) use \textit{supervised learning} ELSE \textit{unsupervised learning}.

\textbf{Our optimizer selects the right learning algorithm 19/20 cases (4 datasets, 5 setups)}
1. Simple features can help identify inaccurate data and unreliable sources.

 Think of source features not algorithms!

2. Use simple discriminative models; in most cases logistic regression is enough.

3. First optimizer to choose between ML algorithms.
1. Simple features can help identify inaccurate data and unreliable sources.

Think of source features not algorithms!

2. Use simple discriminative models; in most cases logistic regression is enough.

3. First optimizer to choose between ML algorithms.

Thank you!

thodrek@stanford.edu