
CS839:	
Probabilistic	Graphical	Models

Lecture	8:	Learning	Fully	Observed	
Undirected	Graphical	Models

Theo	Rekatsinas
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Recall:	Undirected	Graphical	Models
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• Pairwise	(non-causal)	relationships
• We	can	write	down	the	model,	score	specific	configurations	of	the	RVs	
but	not	generate	samples
• Contingency	constraints	on	node	configurations



Recall:	MLE	for	BNs
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• If	we	assume	the	parameters	for	each	CPD	are	globally	independent,	and	
all	nodes	are	fully	observed,	then	the	log-likelihood	function	decomposes	
into	a	sum	of	local	terms,	one	per	node

• MLE-based	parameter	estimation	of	GM	reduces	to	local	est.	of	each	
GLIM.



MLE	for	Undirected	Graphical	Models
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• For	directedmodels,	the	log-likelihood	decomposes	into	a	sum	of	terms,	
one	per	family	(node	plus	parents).
• For	undirected	models,	the	log-likelihood	does	not	decompose,	because	
the	normalization	constant	Z	is	a	function	of	all	parameters.

• In	general,	we	need	to	do	inference	to	learn	parameters	for	undirected	
models,	even	in	the	fully	observed	case.



Log	likelihood	for	Undirected	Graphical	Models	
with	tabular	clique	potentials
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• Sufficient	statistics:	for	an	MRF	(V,	E)	the	number	of	times	that	a	
configuration	x is	observed	in	a	dataset	D can	be	represented	as	follows.

• The	log-likelihood	is:



Log	likelihood	for	Undirected	Graphical	Models	
with	tabular	clique	potentials
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• Sufficient	statistics:	for	an	MRF	(V,	E)	the	number	of	times	that	a	
configuration	x is	observed	in	a	dataset	D can	be	represented	as	follows.

• In	terms	of	the	counts,	the	log	likelihood	is:



Taking	the	derivative
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• Log-likelihood	

• Fist	term:

• Second	term:



Taking	the	derivative
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• Derivative	of	log-likelihood

• Hence	we	need	that:

• This	says	that:
• For	the	maximum	likelihood	estimates	of	the	parameters,	for	each	clique,	the	
model	marginals must	be	equal	to	the	observed	marginals (empirical	counts)

• This	is	only	a	condition	that	the	parameters	should	satisfy!	
• It	does	not	tell	us	how	to	get	the	maximum	likelihood	estimates.



MLE	for	Undirected	Graphical	Models
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• Case	1:	The	model	is	decomposable (triangulated	graph)	and	all	the	clique	
potentials	are	defined	on	maximal	cliques.
• The	MLE	of	clique	potentials	are	equal	to	the	empirical	marginals (or	conditionals)	of	
the	corresponding	clique.

• Solve	MLE	by	inspection

• Decomposable	models
• G	is	decomposable,	G	is	triangulated,	G	has	a	junction	tree

• Ex.:	Chain	X1	– X2	– X3 pMLE(X1, X2, X3) =
p̃(X1, X2)p̃(X2, X3)

p̃(X2)

pMLE(X1, X2) =
X

X3

p̃(X1, X2, X3) = p̃(X1|X2)
X

X3

p̃(X2, X3) = p̃(X1, X2)

pMLE(X2, X3) = p̃(X2, X3)



MLE	for	Undirected	Graphical	Models
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• Decomposable	models
• G	is	decomposable,	G	is	triangulated,	G	has	a	junction	tree

• Ex.:	Chain	X1	– X2	– X3

• To	compute	the	clique	potentials	we	just	use	the	empirical	marginals (or	
conditionals),	i.e.,	the	separator	must	be	divided	into	one	of	its	neighbors.	
Then	Z	=	1

pMLE(X1, X2, X3) =
p̃(X1, X2)p̃(X2, X3)

p̃(X2)

pMLE(X1, X2) =
X

X3

p̃(X1, X2, X3) = p̃(X1|X2)
X

X3

p̃(X2, X3) = p̃(X1, X2)

pMLE(X2, X3) = p̃(X2, X3)



MLE	for	Undirected	Graphical	Models
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• Case	2:	The	model	is	non-decomposable,	the	potentials	are	defined	as	non-
maximal	cliques.	We	cannot	equate	MLE	of	clique	potentials	to	empirical	
marginals (or	conditionals)
• Iterative	potential	fitting
• Generalized	Iterative	Scaling



Iterative	Proportional	Fitting	(IPF)
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• From	the	log-likelihood:

• Let’s	rewrite	in	a	different	way:																																			or

• The	clique	potentials	implicitly	appear	in	the	model	marginal

• Let’s	forget	a	closed	form	solution	and	focus	on	a	fixed-point	iteration	
method

• Need	to	run	inference	for	p(t)(xc)

m(xc)

N c(xc)
=

p(xc)

 c(xc)

p̃(xc)

 c(xc)
=

p(xc)

 c(xc)

p(xc) = f( c(xc))

p̃(xc)

 (t+1)
c (xc)

=
p(xc)

 (t)
c (xc)

 (t+1)
c (xc) =  (t)

c (xc)
p̃(xc)

p(t)(xc)
)



Properties	of	IPF	Updates
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• Set	of	fixed-point	equations:

• We	can	show	that	it	is	also	a	coordinate	ascent	
algorithm	(coordinates=parameters	of	clique	
potentials)

• At	each	step,	it	will	increase	the	log-likelihood,	
and	it	will	converge	to	a	global	maximum.

• Maximizing	the	log	likelihood	is	equivalent	to	
minimizing	the	KL	divergence	(cross	entropy)
• The	max-entropy	principle	to	parameterization	
offers	a	dual	perspective	to	the	MLE.	

 (t+1)
c (xc) =  (t)

c (xc)
p̃(xc)

p(t)(xc)



MLE	for	undirected	graphical	models
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• What	have	we	seen	so	far?

• Decomposable	graphs
• Clique	potentials	correspond	to	marginals or	
conditionals

• Clique	potentials	that	correspond	to	full	tables
• Iterative	Proportional	fitting

• What	about	models	that	are	parameterized	
more	compactly?

 (t+1)
c (xc) =  (t)

c (xc)
p̃(xc)

p(t)(xc)



Feature-parameterized	clique	potentials
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• So	far	we	saw	the	most	general	form	of	an	undirected	graphical	model:	
cliques	are	parameterized	by	general	tabular potential	functions	

• For	large	cliques	these	potentials	are	exponentially	costly	for	inference.	
Also,	we	have	exponentially	many	parameters	to	learn	from	limited	data.

• Solution:	?



Feature-parameterized	clique	potentials
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• So	far	we	saw	the	most	general	form	of	an	undirected	graphical	model:	
cliques	are	parameterized	by	general	tabular potential	functions	

• For	large	cliques	these	potentials	are	exponentially	costly	for	inference.	
Also,	we	have	exponentially	many	parameters	to	learn	from	limited	data.

• Solution:	Change	the	graphical	model	to	make	cliques	smaller.



Feature-parameterized	clique	potentials
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• So	far	we	saw	the	most	general	form	of	an	undirected	graphical	model:	
cliques	are	parameterized	by	general	tabular potential	functions	

• For	large	cliques	these	potentials	are	exponentially	costly	for	inference.	
Also,	we	have	exponentially	many	parameters	to	learn	from	limited	data.

• Solution:	Change	the	graphical	model	to	make	cliques	smaller.

• This	changes	the	dependencies	and	may	force	us	to	make	more	
independence	assumptions	than	what	we	had



Feature-parameterized	clique	potentials
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• So	far	we	saw	the	most	general	form	of	an	undirected	graphical	model:	
cliques	are	parameterized	by	general	tabular potential	functions	

• For	large	cliques	these	potentials	are	exponentially	costly	for	inference.	
Also,	we	have	exponentially	many	parameters	to	learn	from	limited	data.

• Solution:	Keep	the	same	graphical	model	but	use	less	parameters	to	
define	the	clique	potentials
• Recall	parameter	sharing	for	BNs

• This	is	the	idea	behind	feature-based	models.



Features
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• Let	a	clique	correspond	to	three	consecutive	characters
• How	would	you	define	p(c1,c2,c3)?



Features
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• Let	a	clique	correspond	to	three	consecutive	characters
• How	would	you	define	p(c1,c2,c3)?
• For	all	possible	character	combinations	you	need	263 – 1	parameters.
• But	there	are	sequences	that	are	unlikely:	kfd

• A	“feature”	is	a	function	that	is	non-zero	for	a	few	particular	inputs.	Think	
of	Boolean	features.
• Is	“ing”	the	input	sequence?	Then	1	otherwise	0.

• We	can	define	features	for	continuous	features	as	well.	



Features	as	potentials
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• Each	feature	function	can	be	converted	to	a	potential	by	taking	the	
exponent	of	it.	We	can	multiply	these	potentials	together	to	get	a	clique	
potential.

• Example:

• There	is	still	an	exponential	number	of	setting	but	we	only	use	K	
parameters	corresponding	to	the	K	features.
• Can	we	recover	the	tabular	representation?



Combining	Features
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• Each	feature	has	a	weight	θk which	represents	the	numerical	strength	of	
the	feature	and	whether	it	increases	or	decreases	the	probability	of	a	
clique.
• The	marginal	over	the	clique	is	a	generalized	exponential	family	
distribution	(a	generalized	linear	model)

• The	features	may	be	overlapping	across	cliques



Feature-based	model
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• Joint	distribution:

• We	can	use	the	simplified	form

• The	features	correspond	to	the	sufficient	statistics	of	our	model.

• We	need	to	learn	parameters	θk



Feature-based	model
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• Joint	distribution:

• We	can	use	the	simplified	form

• The	features	correspond	to	the	sufficient	statistics	of	our	model.

• We	need	to	learn	parameters	θk
• What	about	IPF?
• Not	clear	how	to	use	this	rule	to	update	the	parameters	and	potentials

 (t+1)
c (xc) =  (t)

c (xc)
p̃(xc)

p(t)(xc)



MLE	of	Feature-based	Undirected	Graphical	Models
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• Objective:	scaled	likelihood	function

• Main	difficulties:	the	partition	function	is	a	complex	function	of	the	
parameters.	If	we	take	a	derivative	Z	appears	in	the	denominator.	Nothing	
changes.	We	want	to	avoid	computing	Z.

• Approximation	time…



MLE	of	Feature-based	Undirected	Graphical	Models
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• Objective:	scaled	likelihood	function

• We	replace	logZ by	its	upper	bound	logZ(θ) <=	μΖ(θ)	– logμ	– 1	
where	μ =	Z-1(θ(t))

• Thus	we	have



MLE	of	Feature-based	Undirected	Graphical	Models
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• We	have

• We	define	

• We	assume																																				.	Also	by	convexity	of	expfi(x) � 0,
X

i

fi = 1 exp(

X

i

⇡ixi) 
X

i

⇡i exp(xi)



MLE	of	Feature-based	Undirected	Graphical	Models
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• We	have

• We	take	the	derivative
• p(t)(x)	is	the	unnormalized version	of		
p(x|θ(t))

• Our	updates	are:



Summary
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• Iterative	Proportional	Fitting	(IPF)	is	a	general	algorithm	for	MLE	of	UGMs
• A fixed-point	equation	for	potentials	over	single	cliques,	uses	coordinate	ascent
• Requires	the	potential	to	be	fully	parameterized
• The	clique	described	by	the	potentials	does	not	have	to	be	max-clique
• For	fully	decomposable	model,	reduces	to	a	single	step	iteration

• Generalized	Iterative	Scaling	(GIS)
• Iterative	scaling	on	general	UGM	with	feature-based	potentials
• IPF	is	a	special	case	of	GIS	where	the	clique	potential	is	built	on	features	defined	as	
indicator	functions	of	the	clique	configurations.



Summary
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