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Recall: Undirected Graphical Models

%) )

X, (Xs)

* Pairwise (non-causal) relationships

* We can write down the model, score specific configurations of the RVs
but not generate samples

* Contingency constraints on node configurations



Recall: MLE for BNs

* If we assume the parameters for each CPD are globally independent, and
all nodes are fully observed, then the log-likelihood function decomposes
into a sum of local terms, one per node
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* MLE-based parameter estimation of GM reduces to local est. of each
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MILE for Undirected Graphical Models

* For directed models, the log-likelihood decomposes into a sum of terms,
one per family (node plus parents).

* For undirected models, the log-likelihood does not decompose, because
the normalization constant Z is a function of all parameters.

P(xla'“: Hl// (X ) Z HWC(X )

ceC X, ceC

* In general, we need to do inference to learn parameters for undirected
models, even in the fully observed case.



Log likelihood for Undirected Graphical Models

with tabular clique potentials

 Sufficient statistics: for an MRF (V, E) the number of times that a
configuration x is observed in a dataset D can be represented as follows.

def def
m(x) = Y &(x,x,) (totalcount), and m(x,)=) m(x) (cliquecount)
* The log-likelihood is  r(DO)=]]]] p(x|&)"**
logp(D|0) =)D 6(x,x,)logp(x|8) =) > 8(x,x,)logp(x|6)

/= Z m(x)log(%n l//c(Xc)J

= ZZm(xc)logy/C(xC)— NlogZ



Log likelihood for Undirected Graphical Models

with tabular clique potentials

 Sufficient statistics: for an MRF (V, E) the number of times that a
configuration x is observed in a dataset D can be represented as follows.

def def
m(x) = ) 5(x,x,) (totalcount), and m(x,)=) m(x) (cliquecount)

* In terms of the counts, the log likelihood is:

logp(D|0) =), > m(x,)logy (x,)—NlogZ

6



Taking the derivative

* Log-likelihood 10gp(D|6’) = Z Z m(x,)logy . (x,)—NlogZ
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Taking the derivative
6Z — m(xc) _N P(xc)
oy .(x,) v .(x) w.(x)

 Derivative of log-likelihood

= )

* Hence we need that: p/;LE (x,)=

* This says that:

* For the maximum likelihood estimates of the parameters, for each clique, the
model marginals must be equal to the observed marginals (empirical counts)

* This is only a condition that the parameters should satisfy!
* |t does not tell us how to get the maximum likelihood estimates.



MILE for Undirected Graphical Models

e Case 1: The model is decomposable (triangulated graph) and all the clique
potentials are defined on maximal cliques.

* The MLE of cligue potentials are equal to the empirical marginals (or conditionals) of
the corresponding clique.

* Solve MLE by inspection

* Decomposable models

| v (X,)
* G is decomposable, G is triangulated, G has a junction tree  P(¥) =3 2 (x)
. Cp(X1, X2)p(X2, X3) |
* Ex.: Chain X1 — X2 — X3 Pure(X1 X2, X3) = 5(X2)
pvre(X1,X2) = H(X1,X2,X3) = 5(X1]X2) Y p(X2,X3) = p(X1, X2)
X3 X3

pMLE(X2,X3) :ﬁ(XQ,X?))



MILE for Undirected Graphical Models

* Decomposable models p(x) = 14 VelXc)
* G is decomposable, G is triangulated, G has a junction tree 11,9:(Xs)
(X1, X2)p(X2,X3)
. P X1,X2,X3) = —
« Ex.: Chain X1—x2—x3 """ ) p(X2)
pure(X1,X2) =) p(X1,X2 X3) =p(X1]X2) ) p(X2,X3) =p(X1,X2)
X3 X3

* To compute the cligue potentials we just use the empirical marginals (or
conditionals), i.e., the separator must be divided into one of its neighbors.
ThenZ=1

~ MLE ~ ~ MLE L Pp(X X))  ~
Vi (X X5) =P (X, X,) Waz (X2,X3)= ﬁ(X) =p (X2 |X;3)
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MLE for Undirected Graphical Models

e Case 2: The model is non-decomposable, the potentials are defined as non-
maximal cligues. We cannot equate MLE of clique potentials to empirical
marginals (or conditionals)

* |terative potential fitting
* Generalized Iterative Scaling



'terative Proportional Fitting (IPF)

4 :m(xc)_N p(x,)
ov . (x.) w.(x,) v (X.)

* From the log-likelihood:

m(X.) p(xc) or p(xc) _

Nve(xe)  te(xe)  the(xe)

* The cligue potentials implicitly appear in the model marginal p(XC)

* Let’s rewrite in a different way:

— f(% (Xc))

* Let’s forget a closed form solution and focus on a fixed-point iteration

method
ﬁ(Xc) o p(Xc) (t+1) _ (1)
éH_l)(Xc) - ét)(Xc) = wc (XC) _ wc (XC)
* Need to run inference for p{(x_)

P(Xc)
pt)(x.)
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Properties of IPF Updates

* Set of fixed-point equations: VIt (%) = P (x,) p(xc)

p)(x,)

* We can show that it is also a coordinate ascent
algorithm (coordinates=parameters of clique
potentials)

* At each step, it will increase the log-likelihood,
and it will converge to a global maximum.

max £ <> min KL(E(X) p(x 9))= Zx: p (x)log PT’ET;))
 Maximizing the log likelihood is equivalent to min,  KL(p(x)|h(x)
minimizing the KL divergence (cross entropy) d:;p(x)logm:—H(p)—;p(X)logh(X)

* The max-entropy principle to parameterization . v, -«
offers a dual perspective to the MLE. S px) =1




MLE for undirected graphical models

 What have we seen so far?

, Ve (X c )
p(\,‘) — A AL

P, (X,)
L A S " ¥ " v

 Decomposable graphs

* Cligue potentials correspond to marginals or
conditionals

* Cligue potentials that correspond to full tables %tﬂ)(Xc) w(t)( ) p(xc)

* |terative Proportional fitting p\ (x.)
* What about models that are parameterized . (Z ' )
more compactly? ye(x;)=expl2,, O
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Feature-parameterized cligue potentials

* So far we saw the most general form of an undirected graphical model:
cliques are parameterized by general tabular potential functions

* For large cligues these potentials are exponentially costly for inference.
Also, we have exponentially many parameters to learn from limited data.

e Solution: ?



Feature-parameterized cligue potentials

* So far we saw the most general form of an undirected graphical model:
cliques are parameterized by general tabular potential functions

* For large cligues these potentials are exponentially costly for inference.
Also, we have exponentially many parameters to learn from limited data.

* Solution: Change the graphical model to make cliques smaller.



Feature-parameterized cligue potentials

* So far we saw the most general form of an undirected graphical model:
cliques are parameterized by general tabular potential functions

* For large cligues these potentials are exponentially costly for inference.
Also, we have exponentially many parameters to learn from limited data.

* Solution: Change the graphical model to make cliques smaller.

* This changes the dependencies and may force us to make more
independence assumptions than what we had
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Feature-parameterized cligue potentials

* So far we saw the most general form of an undirected graphical model:
cliques are parameterized by general tabular potential functions

* For large cligues these potentials are exponentially costly for inference.
Also, we have exponentially many parameters to learn from limited data.

* Solution: Keep the same graphical model but use less parameters to
define the clique potentials

* Recall parameter sharing for BNs

* This is the idea behind feature-based models.



Features

* Let a cligue correspond to three consecutive characters
 How would you define p(c1,c2,c3)?



Features

* Let a clique correspond to three consecutive characters

 How would you define p(c1,c2,c3)?
* For all possible character combinations you need 263 — 1 parameters.
* But there are sequences that are unlikely: kfd

* A “feature” is a function that is non-zero for a few particular inputs. Think
of Boolean features.

* |s “ing” the input sequence? Then 1 otherwise 0.

 WWe can define features for continuous features as well.



Features as potentials

e Each feature function can be converted to a potential by taking the
exponent of it. We can multiply these potentials together to get a clique
potential.

o f. ,,
WC (CI’CE'Cs) :e ):.. " Xe( f x...

K
= Cxp{z gkfk (C15C23C3)}
k =1

* Example:

* There is still an exponential number of setting but we only use K
parameters corresponding to the K features.

* Can we recover the tabular representation?



Combining Features

* Each feature has a weight 6, which represents the numerical strength of
the feature and whether it increases or decreases the probability of a
clique.

 The marginal over the clique is a generalized exponential family

distribution (a generalized linear model)
0., f..(€1,€,,65) + 0, f,.(€,C,,C5) + }

...........

p(¢;,C;,C3) < exp
gL{ll'»‘fL{U',’) (Cl ’ CZ ’ C3 ) T 9//./f/// (C: ’ CZ -’C3 ) L

* The features may be overlapping across cliques wc(xc)Liiexp{ZHkﬁ((xc )}
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Feature-based model

[} [} [} [] 1 1 ’Af
. : " : ”~ F ”~ : : 0' k "C
Joint distribution: p(x) Z @) UW'(X‘) Z@ eXpiLzC § ofi (x )}

L e w
* We can use the simplified form  p(x)= Ztﬁ) exp{Za.f,.(xc )t

* The features correspond to the sufficient statistics of our model.

* We need to learn parameters 6,
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Feature-based model

[} [} [} [] 1 1 ’Af
. : " : ”~ F ”~ : : 0' k "C
Joint distribution: p(x) Z @) UW'(X‘) Z@ eXpiLzC § ofi (x )}

L e w
* We can use the simplified form  p(x)= Ztﬁ) exp{Za.f,.(xc )t

* The features correspond to the sufficient statistics of our model.

* We need to learn parameters 0, 5D (x,) = 0 (x.) p(xc)

* What about IPF? p)(x,.)

* Not clear how to use this rule to update the parameters and potentials
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MLE of Feature-based Undirected Graphical Models

£ (0;:D)=¢(6;D)/N :f\lj Zlog p(x,|6)

* Objective: scaled likelihood function =Y p(x)logp(x |6)
=% ﬁ(x)z 6.f (x)—logZ (6)

* Main difficulties: the partition function is a complex function of the
parameters. If we take a derivative Z appears in the denominator. Nothing

changes. We want to avoid computing Z.

* Approximation time...



MLE of Feature-based Undirected Graphical Models

£ (6;D0)=¢(6;D)/N ::} Y log p(x, | 6)

* Objective: scaled likelihood function =Y F(x)log p(x | 6)
:Zﬁ(x)zng(x)—logZ(())

* We replace logZ by its upper bound logZ(0) <= nZ(0) — logn -1
where p = Z-1(5(1)

/

* Thus we have

Z (6)
Z (6%9)

£ (0;D)2> p(x)Y 0.f (x)- ~logZ (6%)+1
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MLE of Feature-based Undirected Graphical Models

‘Wehave £ (0:0)2 Y 500Y0f (x)- Z(;?))—logzwmwl

* We define Aﬁ(t) 9 A
£ (6;D)> Zﬁ(x)z g1 (x)- Z(;“)) Zexp{z H.f-(x)}—logZ(H(”)+1
:ZgiZE(x)ﬁ(X) Z(H“’)Z p{za()f(X)}exp{ZAﬁ(t)f(x)} 10gZ(9(t))+1

- Za,.z p (X (x)-Y p(x |9(t))exp{z AOf (x)}—logZ 0%)+1

* We assume  [i(z) > 0, Zfz = 1. Also by convexity of exp exp mez ) < Zm exp(x;)

F(6:0)>36 5 FOoF (x)-3 pix |9“))27‘,-(x>exp(A0,-<“)—1ogZ(9<“)+1de(0) |



MLE of Feature-based Undirected Graphical Models

* Wehave Z(0:0)2Y8Y Fx)(x)-Y p(x |0°) Y f.(x)exp(a0)~log Z (9) +1= A(0)

oA ~
We take the derivati S0 = LB OOf () - exp(a6 | p(x |6°)f; ()
¢ e take the derivative i x x
 plt)(x) is the unnormalized version of A0 _ Zx:p(x)fi(X) _ Zx:p(X)ﬁ(X) ACKD
o(x|6) S 100 > P00, )
. - p(t)(x) %ﬁ(x)f,-(x) , fi (x)
* Our updates are: pr(x) = Z(Qm)H[;wwnf,(nz(g( ))]
®(x) zpoof o0 )1 O\ ()
Hi(m) :gi(t)+A9i(t) N p(m)(X):p(t)(x)H eAQi(’)fi(x) :g(g(t))];[(§p(t)(x)ﬁ(x)j (Z(0< )))Z,-:

~ f; (x)
Zp (X (x)
_p®) H x
=P (X)i (zrﬂ“(x)f,-(x)j



Ssummary

* [terative Proportional Fitting (IPF) is a general algorithm for MLE of UGMs
* A fixed-point equation for potentials over single cliques, uses coordinate ascent
* Requires the potential to be fully parameterized
* The cligue described by the potentials does not have to be max-clique
* For fully decomposable model, reduces to a single step iteration

* Generalized Iterative Scaling (GIS)
* |terative scaling on general UGM with feature-based potentials

* |PF is a special case of GIS where the clique potential is built on features defined as
indicator functions of the clique configurations.



Summary

GIS:
sEnE )
1
P (x) = p(r)(x)H (me(x) f(x)j

ACIAC)
") =0" +1o
i g Zp(‘)(x)f (x)
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