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Logistics

1. Project	presentations	next	Tuesday

2. 10	Groups:	10	- 15	mins	presentation	per	group	(We	will	run	late)

3. Things	to	cover:
• What	is	the	problem?
• Why	is	it	interesting	and	important?
• Why	is	it	hard? What	are	the	baselines	(E.g.,	why	do	naive	approaches	fail?)
• Why	hasn't	it	been	solved	before? (Or,	what's	wrong	with	previous	proposed	solutions?	How	does	
yours	differ?)

• What	are	the	key	components	of	your	approach	and	results?
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Snorkel	+	Data	Programming

3Slides	by	Alex	Ratner



MOTIVATION:

In practice, training data is often:
•The bottleneck
•The practical injection point for 
domain knowledge



KEY IDEA:

We can use higher-level, 
weaker supervision to program 
ML models



Outline

• The	Labeling	Bottleneck:	The	new	pain	point	of	ML

• Data	Programming	+	Snorkel:	A	framework	for	weaker,	more	efficient	
supervision

• In	practice:	Empirical	results	&	user	studies



The	ML	Pipeline	Pre-Deep	Learning

Collection
True

False

Labeling Training

Feature engineering used to be the bottleneck…

Feature 
Engineering



The	ML	Pipeline	Today

Collection
Representation 

Learning
True

False

Labeling Training

New pain point, new injection point



Training	Data:	Challenges	&	Opportunities

• Expensive	&	Slow:
• Especially	when	domain	expertise	needed

• Static:
• Real-world	problems	change;	hand-labeled	training	
data	does	not.

• An	opportunity	to	inject	domain	knowledge:
• Modern	ML	models	are	often	too	complex	for	hand-
tuned	structures,	priors,	etc.

How do we get—and use—training data more effectively?



Data	Programming	+	Snorkel
A	Framework	+	System	for	Creating	Training	Data	with	Weak	Supervision

NIPS	2016 SIGMOD	(Demo)	2017



Get users to provide higher-level (but 
noisier) supervision,

Then model & de-noise it (using 
unlabeled data) to train high-quality
models

KEY IDEA:



Data	Programming	Pipeline	in	Snorkel

DOMAIN	
EXPERT

Input:	Labeling	Functions,
Unlabeled	data

def lf1(x):
cid = (x.chemical_id, 

x.disease_id)
return 1 if cid in KB else 0

def lf2(x):
m = re.search(r’.*cause.*’, 

x.between)
return 1 if m else 0

def lf3(x):
m = re.search(r’.*not 

cause.*’, x.between)
return 1 if m else 0

Noise-Aware	
Discriminative	Model

Output:	Probabilistic	
Training	Labels

x1,1

x1,2

h1,3

h1,1

h1,2y1

𝜆"

𝜆#

𝜆$

𝑌

Generative	
Model

Users write labeling 
functions to generate 

noisy labels

1
We model the labeling 
functions’ behavior to 

de-noise them

2
We use the resulting 
prob. labels to train 

a model
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Ex.	Application:	
Knowledge	Base	
Creation	(KBC)



Surprising	Point:

No	hand-labeled	training	data!



Step	1:	Writing	
Labeling	Functions
A	Unifying	Framework	for	Expressing	Weak	Supervision

DOMAIN	
EXPERT

def lf1(x):
cid = (x.chemical_id, 

x.disease_id)
return 1 if cid in KB else 0

def lf2(x):
m = re.search(r’.*cause.*’, 

x.between)
return 1 if m else 0

def lf3(x):
m = re.search(r’.*not 

cause.*’, x.between)
return 1 if m else 0

DOMAIN	EXPERT def lf1(x):
cid = (x.chemical_id, 

x.disease_id)
return 1 if cid in KB else 0

def lf2(x):
m = re.search(r’.*cause.*’, 

x.between)
return 1 if m else 0

def lf3(x):
m = re.search(r’.*not cause.*’, 

x.between)
return 1 if m else 0
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Example:	Chemical-Disease	Relation	
Extraction	from	Text

• We	define	candidate	entity	mentions:
• Chemicals
• Diseases

• Goal:	Populate	a	relational	schema	with	
relation	mentions

ID Chemical Disease Prob.
00 magnesium Myasthenia	

gravis
0.84

01 magnesium quadriplegic 0.73

02 magnesium paralysis 0.96

KNOWLEDGE	BASE	(KB)



Labeling	Functions

• Traditional	“distant	supervision”	
rule	relying	on	external	KB

”Chemical	A	is	found	to	cause	
disease	B	under	certain	
conditions…”

Label = TRUE

Existing	KB Contains (A,B) This	is	likely	to	be	true…	but

def lf1(x):
cid =(x.chemical_id,x.disease_id)
return 1 if cid in KB else 0



Labeling	Functions

• Traditional	“distant	supervision”	
rule	relying	on	external	KB

”Chemical	A	was	found	on	the	
floor	near	a	person	with	
disease	B…”

Label = TRUE

Existing	KB Contains (A,B)
…can	be	false!

def lf1(x):
cid =(x.chemical_id,x.disease_id)
return 1 if cid in KB else 0

We will learn the accuracy of each LF (next)



Writing	Labeling	Functions	in	Snorkel

• Labeling	functions	take	in	
Candidate objects:

Document

Sentence

Span

Entity

CONTEXT	HIERARCHY

• Three levels of abstraction for 
writing LFs in Snorkel:

• Python code

• LF templates

• LF generators

Candidate(A,B) def lf1(x):
cid =(x.chemical_id,x.disease_id)
return 1 if cid in KB else 0

lf1 = LF_DS(KB)

for lf in LF_DS_hier(KB, cut_level=2):
yield lf

A	knowledge	base	
(KB)	with	hierarchyKey Point: Supervision as code



Supported	by	Simple	Jupyter	Interface

snorkel.stanford.edu



Broader	Perspective:

A	Template	for Weak	Supervision



• Distant supervision

• Crowdsourcing

• Weak classifiers

• Domain heuristics / rules 𝜆 ∶ 𝑋	 ↦ 𝑌 ∪ {∅}

A Unifying Method for Weak Supervision



How	to	handle	such	a	diversity	of	
weak	supervision	sources?



Step	2:	Modeling	
Weak	Supervision

𝜆"

𝜆#

𝜆$

𝑌 𝑌.

DOMAIN	EXPERT def lf1(x):
cid = (x.chemical_id, 

x.disease_id)
return 1 if cid in KB else 0

def lf2(x):
m = re.search(r’.*cause.*’, 

x.between)
return 1 if m else 0

def lf3(x):
m = re.search(r’.*not cause.*’, 

x.between)
return 1 if m else 0
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Weak	Supervision:	Core	Challenges

• Unified	input	format

• Modeling

• Using	to	train	a	wide	range	of	models 𝜆"

𝜆#

𝜆$

𝑌
• Accuracies	of	sources
• Correlations	between	sources
• Expertise	of	sources



Weak	Supervision:	Core	Challenges

• Unified	input	format

• Modeling

• Using	to	train	a	wide	range	of	models 𝜆"

𝜆#

𝜆$

𝑌
• Accuracies	of	sources
• Correlations	between	sources
• Expertise	of	sources

NIPS	2016

Intuition: We use agreements / disagreements to learn 
without ground truth



Basic	Generative	Labeling	Model

Λ0,$

Λ0,#

Λ0,"

𝑌0

Labeling	propensity:
𝛽3 = 𝑝6(Λ0,3 ≠ ∅) 𝑓3;<= Λ0, 𝑌0 = exp	(𝜃3;<=Λ0,3# )

𝑓3<BB Λ0, 𝑌0 = exp	(𝜃3<BBΛ0,3𝑌0)

Accuracy:
𝛼3 = 𝑝6 Λ0,3 = 𝑌0	 	𝑌0, Λ0,3 ≠ ∅)

Correlations ICML	2017



Intuition:	Learning	from	Disagreements

Learn	the	model	π = 𝑃 𝑦, Λ using	MLE
• LFs	have	a	hidden	accuracy	parameter
• Intuition:	Majority	vote--estimate	labeling	
function	accuracy	based	on	overlaps	/	conflicts
• Similar	to	crowdsourcing	but	different	scaling.
• small	number	of	LFs,	large	number	of	labels	each

Produce	a	set	of	noisy	training	labels	
𝜇H 𝑦, 𝜆 = 𝑃 I,J ~L 𝑦	|	Λ = 𝜆(𝑥)

x1

x3

x5

x2

x4

Unlabeled	
objects

P(λi|yj)

0.85

0.80

0.65

λ1

λ2

λ3

LFs	(𝜆)

P(yi| 𝜆)

0.95

0.80

0.15

0.85

0.65



Step	2:	Training	a	Noise-Aware	Model

In	a	supervised	learning	setting,	we	would	learn	from	ground-truth	labels:

Here,	we	learn	from	the	noisy	labels:

𝑤P = argminW
1
𝑁Z𝑙(𝑤, 𝑥 0 , 𝑦 0 )

\

0]$

𝑤P = argminW
1
𝑁Z𝔼 𝒚,𝜦 ~𝝅[𝑙 𝑤, 𝑥 0 , 𝑦 0 = 𝑦 ]

\

0]$

Only	requires	simple	tweak	to	loss	function	works	over	many	
models including	Logistic	Regression,	SVMs	and	LSTMs.

𝑇 = { 𝑥$, 0 , 𝑥#, 1 , 𝑥", 0 , … }

𝑇 = { 𝑥$, 0.1 , 𝑥#, 0.6 , 𝑥", 0.3 , … }



Theory:	Scaling	with	Unlabeled	Data

• We	show	that	with:

• O 1 labeling	functions	of	sufficient	quality	/	expressiveness

• 𝑂.(𝜖m#) unlabeled	training	data	points

•àWe	get	𝑂 𝜖 generalization	risk

This is the same asymptotic scaling as in 
supervised methods!



When	is	modeling	the	noise	worthwhile?

• Can look at label density:
• Low: Too sparse to beat MV
• High: MV approaches optimal
• Medium: Just right!

• Can use conditional decision rule 
to safely skip gen. modeling stage
• E.g. during early LF dev cycles 



Putting	it	All	Back	Together

DOMAIN	
EXPERT

Input:	Labeling	Functions,
Unlabeled	data

def lf1(x):
cid = (x.chemical_id, 

x.disease_id)
return 1 if cid in KB else 0

def lf2(x):
m = re.search(r’.*cause.*’, 

x.between)
return 1 if m else 0

def lf3(x):
m = re.search(r’.*not 

cause.*’, x.between)
return 1 if m else 0

Noise-Aware	
Discriminative	Model

Output:	Probabilistic	
Training	Labels

x1,1

x1,2

h1,3

h1,1

h1,2y1

𝜆"

𝜆#

𝜆$

𝑌

Generative	Model

Users write labeling 
functions to generate 

noisy labels

1 We model the labeling 
functions’ behavior to 

de-noise them

2 We use the resulting 
prob. labels to train a 

model
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How	well	does	this	work	in	
practice?
Empirical	Results



Results	on	Chemical-Disease	Relations

Distant
Supervision

Precision: 25.5
Recall:      34.8
F1:            29.4

L
1

L
2

L
3

y

Generative
Model

Precision: 52.3
Recall:      30.4
F1:            38.5

+ 9.1

x1

x2

h3

h1

h2y

Discriminative
Model

Precision: 38.8
Recall:      54.3
F1:            45.3

+ 6.8

True

False

Hand
Supervision

Precision: 39.9
Recall:      58.1
F1:            47.3

+ 2.0



How	easy	is	this	to	use	in	
practice?
User	Study



71% New	Snorkel	users	matched	or	beat	
7	hours	of	hand-labeling

3rd	Place	Score
No	machine	learning	experience
Beginner-level	Python

How	well	did	these	new	Snorkel	users	do?

2.8x Faster	than	hand-labeling	data

45.5% Average	improvement	
in	model	performance

We	recently	ran	a	Snorkel	biomedical	workshop	in	
collaboration	with	the	NIH	Mobilize	Center

15	companies	and	research	groups	attended

Jason	Fries,	Stephen	Bach,	Alex	Ratner,	Joy	Ku,	Christopher	Ré	

Snorkel User Study



Conclusion

• Snorkel	provides	a	unifying	framework	for	combining	and	modeling	
weak	supervision

• Allows	us	to	rapidly	generate	training	data	for	modern	ML	models

• Labeling	functions:	supervision	as	code

• For	more	check	out	snorkel.stanford.edu:	Code,	tutorials,	blogs,	
papers

snorkel.stanford.edu



Sen	Wu
Stanford	University

Fonduer:	Knowledge	Base	Construction
from	Richly	Formatted	Data	



Knowledge bases are everywhere…

Unstructured
Information

Structured
Knowledge Base

Knowledge Base Construction

NELL
And many more…

TextRunner/
ReVerb

But, troves of "richly formatted" information remains untapped



                                          SMBT3904...MMBT3904 
 
NPN Silicon Switching Transistors 
• High DC current gain: 0.1 mA to 100 mA 
• Low collector-emitter saturation voltage 
 

Maximum Ratings 
Parameter Symbol Value Unit 
Collector-emitter voltage VCEO 40 V 
Collector-base voltage VCBO 60 
Emitter-base voltage VEBO 6 
Collector current IC 200 mA 
Total power dissipation 
   TS ≤ 71°C 
   TS ≤ 115°C 

Ptot 
 

 
S330S 

S250S 

mV 
 

Junction temperature Tj 150 °C 

Storage temperature Tstg -65 ... 150 
 

Transistor Datasheet (PDF)

Richly formatted data

Richly formatted data: information 
is expressed via textual, structural, 

tabular, and visual cues.



                                          SMBT3904...MMBT3904 
 
NPN Silicon Switching Transistors 
• High DC current gain: 0.1 mA to 100 mA 
• Low collector-emitter saturation voltage 
 

Maximum Ratings 
Parameter Symbol Value Unit 
Collector-emitter voltage VCEO 40 V 
Collector-base voltage VCBO 60 
Emitter-base voltage VEBO 6 
Collector current IC 200 mA 
Total power dissipation 
   TS ≤ 71°C 
   TS ≤ 115°C 

Ptot 
 

 
S330S 

S250S 

mV 
 

Junction temperature Tj 150 °C 

Storage temperature Tstg -65 ... 150 
 

Transistor Datasheet

Knowledge base construction from richly formatted data
Goal: extract maximum collector current from transistor datasheets

Transistor
Part Current

SMBT3904 200mA
MMBT3904 200mA

Knowledge Base

HasCollectorCurrent



Knowledge base construction from richly formatted data

                                          SMBT3904...MMBT3904 
 
NPN Silicon Switching Transistors 
• High DC current gain: 0.1 mA to 100 mA 
• Low collector-emitter saturation voltage 
 

Maximum Ratings 
Parameter Symbol Value Unit 
Collector-emitter voltage VCEO 40 V 
Collector-base voltage VCBO 60 
Emitter-base voltage VEBO 6 
Collector current IC 200 mA 
Total power dissipation 
   TS ≤ 71°C 
   TS ≤ 115°C 

Ptot 
 

 
S330S 

S250S 

mV 
 

Junction temperature Tj 150 °C 

Storage temperature Tstg -65 ... 150 
 

Transistor Datasheet

Aligned
NER: 

Number

Header: ‘Value’; 
Row: 2; Column: 3

Font: Arial; Size: 12; Style: Bold In richly formatted data, semantics are 
expressed in textual, structural, tabular, and 
visual modalities throughout a document

SMBT3904...MMBT3904
NPN Silicon Switching Transistors
High DC current gain: 0.1 mA to 100 mA
Low collector-emitter saturation voltage
Maximum Ratings
Parameter Symbol  Value Unit
Collector-emitter voltage VCEO  40  V
Collector-base voltage  VCBO  60  
Emitter-base voltage  VEBO  6 
Collector current IC  200 mA
Total power dissipation Ptot mV
TS ≤ 71°C 330
TS ≤ 115°C 250
Junction temperature  Tj 150 °C
Storage temperature Tstg -65 ... 150

Conventional approach 1: Filter out other 
modalities besides unstructured text

Problem: Misses important relations if you 
neglect multimodal information

Conventional approach 2: Limit the context 
scope to sentences or tables.

                                          SMBT3904...MMBT3904 
 
NPN Silicon Switching Transistors 
• High DC current gain: 0.1 mA to 100 mA 
• Low collector-emitter saturation voltage 
 

Maximum Ratings 
Parameter Symbol Value Unit 
Collector-emitter voltage VCEO 40 V 
Collector-base voltage VCBO 60 
Emitter-base voltage VEBO 6 
Collector current IC 200 mA 
Total power dissipation 
   TS ≤ 71°C 
   TS ≤ 115°C 

Ptot 
 

 
S330S 

S250S 

mV 
 

Junction temperature Tj 150 °C 

Storage temperature Tstg -65 ... 150 
 



Deep learning is very successful in many domains



Can we take advantage of this powerful 
tool and apply it to our problem?



Keys to utilizing deep learning

How do we gather enough 
labeled, richly formatted data?

How do we model the characteristics 
of richly formatted data in DL?

                                          SMBT3904...MMBT3904 
 
NPN Silicon Switching Transistors 
• High DC current gain: 0.1 mA to 100 mA 
• Low collector-emitter saturation voltage 
 

Maximum Ratings 
Parameter Symbol Value Unit 
Collector-emitter voltage VCEO 40 V 
Collector-base voltage VCBO 60 
Emitter-base voltage VEBO 6 
Collector current IC 200 mA 
Total power dissipation 
   TS ≤ 71°C 
   TS ≤ 115°C 

Ptot 
 

 
S330S 

S250S 

mV 
 

Junction temperature Tj 150 °C 

Storage temperature Tstg -65 ... 150 
 

?



Fonduer
A weakly supervised deep learning framework for 
knowledge base construction from richly formatted data



Fonduer in practice!

Macrostrat
Lab

Anti-Human Trafficking Search Engine Genome-wide 
Association Studies

Internet 
of Things Paleontology



Fonduer pipeline

Transistor
Part Current

SMBT3904 200mA

MMBT3904 200mA

                                          SMBT3904...MMBT3904 
 
NPN Silicon Switching Transistors 
• High DC current gain: 0.1 mA to 100 mA 
• Low collector-emitter saturation voltage 
 

Maximum Ratings 
Parameter Symbol Value Unit 
Collector-emitter voltage VCEO 40 V 
Collector-base voltage VCBO 60 
Emitter-base voltage VEBO 6 
Collector current IC 200 mA 
Total power dissipation 
   TS ≤ 71°C 
   TS ≤ 115°C 

Ptot 
 

 
S330S 

S250S 

mV 
 

Junction temperature Tj 150 °C 

Storage temperature Tstg -65 ... 150 
 

                                          SMBT3904...MMBT3904 
 
NPN Silicon Switching Transistors 
• High DC current gain: 0.1 mA to 100 mA 
• Low collector-emitter saturation voltage 
 

Maximum Ratings 
Parameter Symbol Value Unit 
Collector-emitter voltage VCEO 40 V 
Collector-base voltage VCBO 60 
Emitter-base voltage VEBO 6 
Collector current IC 200 mA 
Total power dissipation 
   TS ≤ 71°C 
   TS ≤ 115°C 

Ptot 
 

 
S330S 

S250S 

mV 
 

Junction temperature Tj 150 °C 

Storage temperature Tstg -65 ... 150 
 

                                          SMBT3904...MMBT3904 
 
NPN Silicon Switching Transistors 
• High DC current gain: 0.1 mA to 100 mA 
• Low collector-emitter saturation voltage 
 

Maximum Ratings 
Parameter Symbol Value Unit 
Collector-emitter voltage VCEO 40 V 
Collector-base voltage VCBO 60 
Emitter-base voltage VEBO 6 
Collector current IC 200 mA 
Total power dissipation 
   TS ≤ 71°C 
   TS ≤ 115°C 

Ptot 
 

 
S330S 

S250S 

mV 
 

Junction temperature Tj 150 °C 

Storage temperature Tstg -65 ... 150 
 

Data Input

Candidate 
Generation

Generate 
Training data

Preprocess 
data

Output

HasCollectorCurrent

Featurization
& 

Classification



Generating richly formatted training data



Multimodal weak supervision

                                          SMBT3904...MMBT3904 
 
NPN Silicon Switching Transistors 
• High DC current gain: 0.1 mA to 100 mA 
• Low collector-emitter saturation voltage 
 

Maximum Ratings 
Parameter Symbol Value Unit 
Collector-emitter voltage VCEO 40 V 
Collector-base voltage VCBO 60 
Emitter-base voltage VEBO 6 
Collector current IC 200 mA 
Total power dissipation 
   TS ≤ 71°C 
   TS ≤ 115°C 

Ptot 
 

 
S330S 

S250S 

mV 
 

Junction temperature Tj 150 °C 

Storage temperature Tstg -65 ... 150 
 

Transistor Datasheet

Weak supervision: express any supervision signal 
via labeling functions to generate training data

# Check if current is in the same row with keyword `collector`
def in_the_same_row_with(candidate):
if 'collector' in row_ngrams(candidate.current):
return 1

else: return -1



Modeling Weak Supervision

=Abstain

Intuition: Use agreements / disagreements to 
learn the accuracy of LFs without ground truth

Output:	Probabilistic	
Training	Labels

0.85

0.15

0.5

Data programming/MeTal



Multimodal supervision is key to quality

R
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Textual Structural Tabular Visual

Modality distribution of supervisionDifferent supervision resources’ effect 

Users intuitively rely on multimodal information for supervision

Q
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0

0.2

0.4

0.6

0.8

1.0

Textual All modalities

9.6x

For transistor datasheets…



Featurization and Classification for Richly 
Formatted Data



LSTM for Textual Information

                                          SMBT3904...MMBT3904 
 
NPN Silicon Switching Transistors 
• High DC current gain: 0.1 mA to 100 mA 
• Low collector-emitter saturation voltage 
 

Maximum Ratings 
Parameter Symbol Value Unit 
Collector-emitter voltage VCEO 40 V 
Collector-base voltage VCBO 60 
Emitter-base voltage VEBO 6 
Collector current IC 200 mA 
Total power dissipation 
   TS ≤ 71°C 
   TS ≤ 115°C 

Ptot 
 

 
S330S 

S250S 

mV 
 

Junction temperature Tj 150 °C 

Storage temperature Tstg -65 ... 150 
 

Transistor Datasheet

Problem: LSTM networks struggle to capture the 
multimodal characteristics of richly formatted data.

[[1 SMBT3904 1]] … MMBT3904 [[2 200 2]]

𝛼0$ 𝛼0# 𝛼0" 𝛼0n 𝛼0o 𝛼3$ 𝛼3#
𝛼3"

sentence	𝑠0 sentence	𝑠3

features

Bi-LSTM	with	Attention

[ ]
⊕ ⊕

Classifier

	ℎ0$s 	ℎ0#s

	ℎ0$t 	ℎ0#t 	ℎ0"t 	ℎ0nt

	ℎ0ns	ℎ0"s 	ℎ0os

	ℎ0ot

	ℎ3$s

	ℎ3$t

	ℎ3#s

	ℎ3#t

	ℎ3"s

	ℎ3"t

𝑡0 𝑡3

Textual	features

LSTM excels at relation extraction from text
Xu et al., 2015; Miwa et al., 2016; Zhang et al., 2016



Augmenting LSTM with Multimodal Features

                                          SMBT3904...MMBT3904 
 
NPN Silicon Switching Transistors 
• High DC current gain: 0.1 mA to 100 mA 
• Low collector-emitter saturation voltage 
 

Maximum Ratings 
Parameter Symbol Value Unit 
Collector-emitter voltage VCEO 40 V 
Collector-base voltage VCBO 60 
Emitter-base voltage VEBO 6 
Collector current IC 200 mA 
Total power dissipation 
   TS ≤ 71°C 
   TS ≤ 115°C 

Ptot 
 

 
S330S 

S250S 

mV 
 

Junction temperature Tj 150 °C 

Storage temperature Tstg -65 ... 150 
 

Transistor Datasheet

Font:	Arial;	Size:	10	Aligned
Header: ‘Value’; 

Row: 2; Column: 3

Font: Arial; Size: 12; Style: Bold We use the multimodal information stored in the 
document to extract basic multimodal features:

q Structural features
q Tabular features
q Visual features

Augmentation with multimodal features 
captures signals a traditional LSTM would miss.



Fonduer's Multimodal LSTM

[[1 SMBT3904 1]] … MMBT3904 [[2 200 2]]

                                          SMBT3904...MMBT3904 
 
NPN Silicon Switching Transistors 
• High DC current gain: 0.1 mA to 100 mA 
• Low collector-emitter saturation voltage 
 

Maximum Ratings 
Parameter Symbol Value Unit 
Collector-emitter voltage VCEO 40 V 
Collector-base voltage VCBO 60 
Emitter-base voltage VEBO 6 
Collector current IC 200 mA 
Total power dissipation 
   TS ≤ 71°C 
   TS ≤ 115°C 

Ptot 
 

 
S330S 

S250S 

mV 
 

Junction temperature Tj 150 °C 

Storage temperature Tstg -65 ... 150 
 

Textual	features

Font:	Arial;	Size:	12;	Style:	Bold

Font:	Arial;	Size:	10	

Header:	‘Value’;	Row:	5; Column: 3

Aligned

𝛼0$ 𝛼0# 𝛼0" 𝛼0n 𝛼0o 𝛼3$ 𝛼3#
𝛼3"

sentence	𝑠0 sentence	𝑠3

Structural	features Visual features Tabular	features

Multimodal	features

Bi-LSTM	with	Attention Extended	Feature	Library

[ ]
⊕ ⊕

Softmax

	ℎ0$s 	ℎ0#s

	ℎ0$t 	ℎ0#t 	ℎ0"t 	ℎ0nt

	ℎ0ns	ℎ0"s 	ℎ0os

	ℎ0ot

	ℎ3$s

	ℎ3$t

	ℎ3#s

	ℎ3#t

	ℎ3"s

	ℎ3"t

𝑡0 𝑡3

Fonduer: a KBC system that takes advantage of both 
techniques to reason about all available signals.

Signals from different modalities can be useful to find the information.
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The impact of multimodal features

Multimodal features significantly impact the quality of extraction

For transistor datasheets…



Fonduer in the wild
Empirical results & real-world uses



Fonduer vs. Human-curated Knowledge Bases

Human-created Machine-created

Fonduer

10 years <6 months

Same set of documents

Precision 0.89 

1.59x extractions1.0x extractions



Input: User-customized HTML auction pages → Output: Structured knowledge base

Improve auction search quality and UXExtract key facts (make, model, license, etc.)

Fonduer

How people use Fonduer in industry



Knowledge Base Construction from Richly Formatted Data

¤ Fonduer helps build high-quality KBC from richly formatted data

¤ Allows users to leverage multimodal signals

¤ Augments deep learning model with features from each data modality 

to achieve high quality

¤ Fonduer is supporting real world applications

Thank you!
Sen Wu

(senwu@cs.stanford.edu)

https://github.com/HazyResearch/fonduer



The Fonduer data model

                                          SMBT3904...MMBT3904 
 
NPN Silicon Switching Transistors 
• High DC current gain: 0.1 mA to 100 mA 
• Low collector-emitter saturation voltage 
 

Maximum Ratings 
Parameter Symbol Value Unit 
Collector-emitter voltage VCEO 40 V 
Collector-base voltage VCBO 60 
Emitter-base voltage VEBO 6 
Collector current IC 200 mA 
Total power dissipation 
   TS ≤ 71°C 
   TS ≤ 115°C 

Ptot 
 

 
S330S 

S250S 

mV 
 

Junction temperature Tj 150 °C 

Storage temperature Tstg -65 ... 150 
 

Richly formatted data
Document

Section

TableText Figure

CaptionRow Column 

Paragraph

Sentence

Cell

Fonduer automatically parses the richly formatted 
data into the data model that:
q Preserves structure/semantics across modalities
q Unifies a diverse variety of formats and styles
q Serves as the formal representation in KBC

Data model



We want to detect and repair errors in a dataset

Where does data cleaning come up? All analytics!

University of Chicago, Cicago, IL 

Data feeds Urban dataInvestment

Data cleaning



Chicago’s food inspection dataset

Detect and repair errors in a structured 
dataset

A simple example



Functional dependencies

Bohannon et al., 2005, 2007; Kolahi and Lakshmanan , 2005;
Bertossi et al., 2011; Chu et al., 2013; 2015 Fagin et al., 2015

Constraints and minimality



Functional dependencies

Action: Fewer erroneous than correct cells; perform 
minimum number of changes to satisfy all constraints

Constraints and minimality



Functional dependencies

Error; 
correct zip 
code is 
60608

Does not fix errors and introduces new ones.

Constraints and minimality



External list of addressesMatching dependencies

Fan et al., 2009; Bertossi et al., 2010; Chu et al., 2015

External information



External list of addressesMatching dependencies

Action: Map external information to input dataset 
using matching dependencies and repair 
disagreements

External information



External list of addressesMatching dependencies

External dictionaries may have limited 
coverage or not exist altogether

External information



Reason about co-occurrence 
of values across cells in a tuple

Estimate the distribution 
governing each attribute

Hellerstein, 2008; Mayfield et al., 2010; Yakout et al., 2013

Example: Chicago co-occurs with IL

Quantitative statistics



Reason about co-occurrence 
of values across cells in a tuple

Estimate the distribution 
governing each attribute

Again, fails to repair the wrong zip code

Quantitative statistics



Quantitative statistics

Constraints and minimality External data

Different solutions suggest 
different repairs

Let’s combine everything



Probabilistic data repairs

HoloClean 
[VLDB’17]



Probabilistic data repairs

HoloClean 
[VLDB’17]



Error detection in HoloClean
HoloClean focuses on repairing. Error detection is treated as black-box.

Input Output

: Correct cells
: Potentially erroneous cells

Error detection splits input into 
correct and potentially 
erroneous cells.

Error Detection
Example:

External:



Probabilistic data repairs

HoloClean 
[VLDB’17]



HoloClean’s model for data repairs



Probabilistic data repairs

HoloClean 
[VLDB’17]



HoloClean’s model
t1.City t1.Zip

t4.City t4.Zip

Factor Graph

Exponential family 
(canonical form)

w1

w1

W2

W2

w3

HoloClean automatically 
generates a factor graph that 
captures:
• Co-occurrences
• Correlations due to constraints
• Evidence due to external 

dataRepairing is a learning and 
inference problem:
Learn parameters w (use 
SGD) and infer the marginal 
distribution for unknown 
variables (use Gibbs 
sampling)



Probabilistic data repairs

HoloClean is a compiler for automatically generating 
probabilistic programs for data cleaning



HoloClean in practice

HoloClean: our approach combining all signals and using inference
Holistic[Chu,2013]: state-of-the-art for constraints & minimality
KATARA[Chu,2015]: state-of-the-art for external data
SCARE[Yakout,2013]: state-of-the-art ML & qualitative statistics

State-of-the-art 
does not scale or 
performs no 
correct repairs.



Challenge: Inference under constraints is #P-complete

Applying probabilistic inference naively does not scale to data 
cleaning instances with millions of tuples

Idea 1: Prune domain of random variables.

Idea 2: Relax constraints over sets of random variables to 
features over independent random variables.

Scaling probabilistic inference



Relaxing constraints
Tuple ID University State

t1 U of 
Chicago IL

t2 U of 
Chicago IL

t3 U of 
Chicago CA

FDs correspond to constraints over random variables (RVs)
Example: 

Naive globally consistent model: It 
introduces correlations over four random 
variables.

We have      possible 
worlds for such 
correlations.

D: domain of random variables

“The same 
University must 
be in the same 
State”

Functional dependency: 



Tuple ID University State

t1 U of 
Chicago IL

t2 U of 
Chicago IL

t3 U of 
Chicago CA

Functional dependency: 
“The same 
University must 
be in the same 
State”

Relax constraints to features over independent RVs
(corresponds to a voting model)Example: 

HoloCleans’ locally consistent model introduces  
features over independent random variables.

Only 4D possible 
worlds considered

Relaxing constraints



t1.City t1.Zip

t4.City t4.Zip

w1

w1

w2

w2

w3

“Address=
3465 S 
Morgan St”

“Zip -> City”
“Address=
3465 S 
Morgan St”

Relaxing constraints



t1.City

t4.City

w1

w1

w3’

“Address=
3465 S 
Morgan St”

“Assignment Chicago 
violates Zip -> City 
due to t4”

w3’

“Assignment Cicago 
violates Zip -> City 
due to t1”

We have one relaxed factor for  each 
value in the domain of the RV

Relaxing constraints



t1.Zip

t4.Zip

w2

w2

w4’

“Address=
3465 S 
Morgan St”

“Assignment 60608 
violates Zip -> City 
due to t4”

w4’

“Assignment 60609 
violates Zip -> City 
due to t1”

We have one relaxed factor for  each 
value in the domain of the RV

Relaxing constraints



Faster compilation, learning, and inference when 
we do not prune the RV domain

Relaxing constraints: In practice



Increased robustness (more accurate repairs) when RV 
domain is ill-specified (no heavy pruning used)

Relaxing constraints: In practice



Data cleaning is a ML problem

1. Combine disparate signals to 
perform accurate data repairs

2. Data cleaning is a statistical 
learning and inference problem
• Transition from logic to 

probability3. Connections to data vs 
knowledge tradeoffs in 
structured prediction



A quest for rigor
1. HoloClean provided empirical 

evidence the probabilistic 
methods work better

2. The ad-hoc relaxations for  
efficiency give more 

accurate
data repairs

Why did logic fail us?
and Why does relaxing constraints work? 



Back to the foundations: Logic and Databases
1. In 1969, Edgar F. Codd introduced the relational data model

2. In t007, C.J. Date wrote that logic and databases are “inextricably intertwined”

Two main uses of logic in databases

1. Logic is used as a database query language to 
express questions asked against databases.

2. Logic is used as a specification language to express 
integrity constraints in databases.



Noise models in DB theory

Slide by Phokion Kolaitis
[SAT 2016] 



Noise models in DB theory

Slide by Phokion Kolaitis
[SAT 2016] 



Noise models outside DB



Noise models outside DB
Noisy Channel

1. We see an observation x in the noisy world

2. Find the correct world w

Applications

Speech, OCR, Spelling correction, Part of speech tagging, machine translations, etc…

Let’s try new foundations for data cleaning!
…and see how they relate to logic.



Probabilistic Unclean Databases

Step 2: Logical constraints ensure consistency

Log-linear model penalizing invalid 
“possible worlds”

Intentional Data Model

Probability that tuple index was 
included in the world

Probability obtaining a certain 
value

Step 1: Tuples are generated independently 

[Work under submission, 2018]



Probabilistic Unclean Databases
Realizer Model

Probability assigned to an intended 
instance I

Conditional prob. of getting J given 
I  

We consider two models
1. Insert unintended tuples (subset)
2. Update values of existing tuples

These models capture the data 
errors considered in prior works



Probabilistic Unclean Databases
Computational problems

1. Cleaning: Find most probable I

2. Probabilistic query answering 
(PQA): evaluate a query directly 
on J

3. Learning Intentional and 
Realizer models



Probabilistic Unclean Databases
Preliminary Results

1. Cleaning: Connections to 
minimum repairs

2. Cleaning is in P-time for key 
constraints

3. Connections to consistent 
query answering

4. Learning from one noisy 
database without training data



Probabilistic Cleaning vs. Minimal Repairs

Theorem
For a subset realizer with low noise probabilistic 
repairs and minimal subset repairs are equivalent.

Subset realizer: Noisy channel that 
introduces new tuples
Low noise: probability of insertion from 
realizer lower than probability of insertion 
from intentional model

No assumptions on tuple 
independence or attribute 
value independence.



Probabilistic Cleaning vs. Minimal Repairs

Theorem
For an update realizer with low noise probabilistic 
repairs and cardinality minimal subset repairs are 
equivalent when (1) tuples are independent and (2) 
tuple attribute assignments are independent! 

Update realizer: Noisy channel that permutes 
the values of cells (tuple attributes)
Low noise: probability of update less than 0.5

Strong assumptions that 
violate the relational model!



A quest for rigor
1. HoloClean provided empirical 

evidence the probabilistic 
methods work better

2. The ad-hoc relaxations for  
efficiency give more 

accurate
data repairs

Why did logic fail us?
and Why does relaxing constraints work? 



How hard is structured prediction?

Our relaxation corresponds 
to an approximation for 
structured prediction 

Cleaning is a structured prediction problem

Globerson et al., ICML 2015
Foster et al., AISTATS 2018 

Recent work is 
targeting hardness 
of structured 
prediction

We are working on extensions to 
categorical variables and hypergraphs.


