CS839:

Probabilistic Graphical Models

Lecture 23: Applications in Data Management

Theo Rekatsinas

Logistics

- 1. Project presentations next Tuesday
- 2. 10 Groups: 10 15 mins presentation per group (We will run late)
- 3. Things to cover:
- What is the problem?
- Why is it interesting and important?
- Why is it hard? What are the baselines (E.g., why do naive approaches fail?)
- Why hasn't it been solved before? (Or, what's wrong with previous proposed solutions? How does yours differ?)
- What are the key components of your approach and results?

Snorkel + Data Programming

Slides by Alex Ratner

MOTIVATION:

In practice, training data is often:

The bottleneck

 The practical injection point for domain knowledge

KEY IDEA:

We can use *higher-level, weaker* supervision to *program* ML models

Outline

- The Labeling Bottleneck: The new pain point of ML
- Data Programming + Snorkel: A framework for weaker, more efficient supervision
- In practice: Empirical results & user studies

The ML Pipeline Pre-Deep Learning

Feature engineering used to be the bottleneck...

The ML Pipeline Today

New pain point, new injection point

Training Data: Challenges & Opportunities

- Expensive & Slow:
 - Especially when domain expertise needed
- Static:
 - Real-world problems change; hand-labeled training data does not.
- An opportunity to inject domain knowledge:
 - Modern ML models are often too complex for handtuned structures, priors, etc.

How do we get—*and use*—training data more effectively?

Data Programming + Snorkel

A Framework + System for Creating Training Data with Weak Supervision

NIPS 2016

SIGMOD (Demo) 2017

Get users to provide *higher-level (but noisier)* supervision,

Then model & de-noise it (using *unlabeled* data) to train **high-quality** models

Data Programming Pipeline in Snorkel

Surprising Point:

No hand-labeled training data!

Step 1: Writing Labeling Functions

A Unifying Framework for Expressing Weak Supervision

Example: Chemical-Disease Relation Extraction from Text

TITLE:

Myasthenia gravis presenting as weakness after magnesium administration.

We studied a patient with no prior history of neuromuscular disease who became virtually quadriplegic after parenteral magnesium administration for preeclampsia. The serum magnesium concentration was 3.0 mEq/L, which is usually well tolerated. The magnesium was stopped and she recovered over a few days. While she was weak, 2-Hz repetitive stimulation revealed a decrement without significant facilitation at rapid rates or after exercise, suggesting postsynaptic neuromuscular blockade. After her strength returned, repetitive stimulation was normal, but single fiber EMG revealed increased jitter and blocking. Her acetylcholine receptor antibody level was markedly elevated. Although paralysis after magnesium administration has been described in patients with known myasthenia gravis, it has not previously been reported to be the initial or only manifestation of the disease. Patients who are unusually sensitive to the neuromuscular effects of magnesium should be suspected of having an underlying disorder of neuromuscular transmission.

- We define candidate entity mentions:
 - Chemicals
 - Diseases
- Goal: Populate a relational schema with relation mentions

ID	Chemical	Disease	Prob.
00	magnesium	Myasthenia gravis	0.84
01	magnesium	quadriplegic	0.73
02	magnesium	paralysis	0.96

KNOWLEDGE BASE (KB)

Labeling Functions

• Traditional "distant supervision" rule relying on external KB

def lf1(x): cid =(x.chemical_id,x.disease_id) return 1 if cid in KB else 0

"Chemical A is found to cause disease B under certain conditions..."

→ Label = TRUE

This is likely to be true... but

Labeling Functions

• Traditional "distant supervision" rule relying on external KB

def lf1(x):
 cid =(x.chemical_id,x.disease_id)
 return 1 if cid in KB else 0

We will learn the accuracy of each LF (next)

Writing Labeling Functions in Snorkel

• Labeling functions take in Candidate objects:

• Three levels of abstraction for writing LFs in Snorkel:

Supported by Simple Jupyter Interface

snorkel.stanford.edu

Broader Perspective:

A Template for Weak Supervision

A Unifying Method for Weak Supervision

- Distant supervision
- Crowdsourcing
- Weak classifiers
- Domain heuristics / rules

How to handle such a diversity of weak supervision sources?

Step 2: Modeling Weak Supervision

Weak Supervision: Core Challenges

• Unified input format

- Modeling
 Accuracies of sources
 Correlations between sources
 Expertise of sources
- Using to train a wide range of models

Weak Supervision: Core Challenges

Unified input format

- Modeling

- Accuracies of sources NIPS 202
 Correlations between sources
 Expertise of sources
- Using to train a wide range of models

Intuition: We use agreements / disagreements to learn without ground truth

Basic Generative Labeling Model

Labeling propensity: $\beta_j = p_{\theta}(\Lambda_{i,j} \neq \emptyset) \quad f_j^{lab}(\Lambda_i, Y_i) = \exp(\theta_j^{lab} \Lambda_{i,j}^2)$

Accuracy:

$$\alpha_j = p_{\theta} (\Lambda_{i,j} = Y_i \mid Y_i, \Lambda_{i,j} \neq \emptyset)$$

 $f_j^{acc}(\Lambda_i, Y_i) = \exp(\theta_j^{acc} \Lambda_{i,j} Y_i)$

Correlations [ICML 2017

Intuition: Learning from Disagreements

Learn the model $\pi = P(y, \Lambda)$ using MLE

- LFs have a hidden *accuracy parameter*
- Intuition: Majority vote--estimate labeling function accuracy based on overlaps / conflicts
 - Similar to *crowdsourcing but different scaling.*
 - small number of LFs, large number of labels each

Produce a set of *noisy* training labels $\mu_{\pi}(y, \lambda) = P_{(y,\Lambda)\sim\pi}(y \mid \Lambda = \lambda(x))$

Step 2: Training a Noise-Aware Model

In a supervised learning setting, we would learn from ground-truth labels:

$$\widehat{w} = \operatorname{argmin}_{w} \frac{1}{N} \sum_{i=1}^{N} l(w, x^{(i)}, y^{(i)}) \qquad T = \{(x_{1}, 0), (x_{2}, 1), (x_{3}, 0), ...\}$$

Here, we learn from the *noisy* labels:

$$\widehat{w} = \operatorname{argmin}_{w} \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{(y,A) \sim \pi} [l(w, x^{(i)}, y^{(i)} = y)] \qquad T = \{(x_{1}, 0.1), (x_{2}, 0.6), (x_{3}, 0.3), \dots\}$$

Only requires simple tweak to loss function works over *many models* including Logistic Regression, SVMs and LSTMs.

Theory: Scaling with Unlabeled Data

- We show that with:
 - O(1) labeling functions of sufficient quality / expressiveness
 - $\tilde{O}(\epsilon^{-2})$ unlabeled training data points
 - \rightarrow We get $O(\epsilon)$ generalization risk

This is the same asymptotic scaling as in supervised methods!

When is modeling the noise worthwhile?

- Can look at *label density:*
 - Low: Too sparse to beat MV
 - High: MV approaches optimal
 - Medium: Just right!
- Can use conditional decision rule to safely skip gen. modeling stage
 - E.g. during early LF dev cycles

Putting it All Back Together

How well does this work in practice?

Empirical Results

Results on Chemical-Disease Relations

How easy is this to use in practice?

User Study

Snorkel User Study

We recently ran a Snorkel biomedical workshop in collaboration with the NIH Mobilize Center

15 companies and research groups attended

3rd Place Score

No machine learning experience Beginner-level Python

How well did these new Snorkel users do?

71% New Snorkel users matched or beat 7 hours of hand-labeling

2.8 x Faster than hand-labeling data

Average improvement in model performance

Conclusion

- Snorkel provides a unifying framework for combining and modeling weak supervision
 - Allows us to rapidly generate training data for modern ML models
 - Labeling functions: *supervision as code*
- For more check out snorkel.stanford.edu: Code, tutorials, blogs, papers

Fonduer: Knowledge Base Construction from Richly Formatted Data

Knowledge bases are everywhere...

But, troves of "richly formatted" information remains untapped

Richly formatted data

Richly formatted data: information is expressed via textual, structural, tabular, and visual cues.

W–

Transistor Datasheet (PDF)

SMBT3904...MMBT3904

NPN Silicon Switching Transistors

- High DC current gain: 0.1 mA to 100 mA
- Low collector-emitter saturation voltage

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CEO}	40	V
Collector-base voltage	V _{CBO}	60	
Emitter-base voltage	V _{EBO}	6	
Collector current	I _C	200	mA
Total power dissipation	P _{tot}		mV
T _S ≤ 71°C		330	
<i>T</i> _S ≤ 115°C		250	
Junction temperature	T _i	150	O°
Storage temperature	$T_{\rm stg}$	-65 150	

Knowledge base construction from richly formatted data

Goal: extract maximum collector current from transistor datasheets

Transistor Datasheet

SMBT3904. MMBT3904

NPN Silicon Switching Transistors

- High DC current gain: 0.1 mA to 100 mA
- Low collector-emitter saturation voltage

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CEO}	40	V
Collector-base voltage	V _{CBO}	60	
Emitter-base voltage	V _{EBO}	6	
Collector current	I _C	200	mA
Total power dissipation	P _{tot}		mV
T _S ≤ 71°C		330	
<i>T</i> _S ≤ 115°C		250	
Junction temperature	T _i	150	°C
Storage temperature	T _{stg}	-65 150	
$T_{\rm S} \le 71^{\circ}{\rm C}$ $T_{\rm S} \le 115^{\circ}{\rm C}$ Junction temperature Storage temperature	T _i T _{stg}	330 250 150 -65 150	°C

Knowledge Base

Knowledge base construction from richly formatted data

Transistor Datasheet

In richly formatted data, semantics are expressed in textual, structural, tabular, and visual modalities throughout a document

Conventional approach 1: Filter out other modalities besides unstructured text

Conventional approach 2: Limit the context scope to sentences or tables.

Problem: Misses important relations if you neglect multimodal information

Deep learning is very successful in many domains

work here or

ons.

Andrej Karpathy Follow

Director of AI at Tesla. Previously Research Scientist at OpenAI and PhD student at Stanford. I like to train deep neural nets on large datasets. Nov 11, 2017 · 8 min read

Software 2.0

I sometimes see people refer to neural networks as just "another tool in your

machine learn Alibaba's artificial intelligence bot beats humans at reading in a first there, and som for machines Unfortunately

A deep neural network model developed by Alibaba has Neural networ scored higher than humans in a reading comprehension test, paving the way for bots to replace people in of a fundamen customer service jobs

H20 Deep Learning beats MNIST

> install.packages("h2o") library(h2o) h2oServer <- h2o.init(ip="mr-0xd1", port=53322) train_hex <- h2o.importFile(h2oServer, "mnist/train.csv.gz")</pre> cest_hex <- h2o.importFile(h2oServer, "mnist/test.csv.gz")</pre> record_model <- h2o.deeplearning(x = 1:784, y = 785, data = train_ activation = "RectifierWithDrog epochs = 8000, l1 = 1e-5, input train_samples_per_iteration = record_model@model\$confusion Predicted Actual 0 0.00612 0 0.0008 0 0.0038 1 0.006 6 0.0112 0 0.0112 3 0.0143 9 26 17 186 ♡ 484 ⊠

KEY MOMENTS IN DEEP-LEARNING HISTORY 2014-2016

	2014	2015	2016	
Dataset	JANUARY Google acquires DeepMind, a startup specializing in combining deep learning and reinforcement learning, for \$600 million.	DECEMBER A team from Microsoft, using neural nets, outperforms a human on the ImageNet challenge.	MARCH DeepMind's AlphaGo, using deep learning, defeats world champion Lee Sedol in the Chinese game of go, four games to one.	ALPHAGO OU.DI 1:00 OU.DI 1:0

LEE JIN-MAN—AP PHOTO

Can we take advantage of this powerful tool and apply it to our problem?

Keys to utilizing deep learning

neuralnetworksanddeeplearning.com - Michael Nielsen, Yoshua Bengio, Ian Goodfellow, and Aaron Courville, 2016.

How do we gather enough labeled, richly formatted data?

How do we model the characteristics of richly formatted data in DL?

Fonduer

A <u>weakly supervised</u> deep learning framework for knowledge base construction from richly formatted data

Fonduer in practice!

Anti-Human Trafficking

Search Engine

Genome-wide Association Studies

Internet of Things

Paleontology

Fonduer pipeline

Generating richly formatted training data

Multimodal weak supervision

Transistor Datasheet SMBT3904..MMBT3904 NPN Silico Candidate 1 sistors High DC current gain: 0.1 mA to 100 mA Low collector-emitter saturation voltage Candidate 2 Maximum Ratings Symbol Unit **Parameter** Value V Collector-emitter voltage $V_{\rm CEO}$ 40 Collector-base voltage $V_{\rm CBO}$ 60 Emitter-base voltage $V_{\rm EBO}$ 200 Collector current mΑ $I_{\rm C}$ Total power dissipation $P_{\rm tot}$ mV $T_{\rm S} \leq 71^{\circ}{\rm C}$ 330 $T_{\rm S} \leq 115^{\circ}{\rm C}$ 250 °C Junction temperature T_{i} 150 -65 ... 150 Storage temperature $T_{\rm stg}$

Weak supervision: express any supervision signal via labeling functions to generate training data

Check if current is in the same row with keyword `collector`
def in_the_same_row_with(candidate):
 if 'collector' in row_ngrams(candidate.current):
 return 1
 else: return -1

Multimodal supervision is key to quality

NDUER

For transistor datasheets...

Users intuitively rely on multimodal information for supervision

Featurization and Classification for Richly Formatted Data

LSTM for Textual Information

Transistor Datasheet

SMBT3904...MMBT3904

NPN Silicon Switching Transistors

- High DC current gain: 0.1 mA to 100 mA
- Low collector-emitter saturation voltage

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CEO}	40	V
Collector-base voltage	V _{CBO}	60	
Emitter-base voltage	V _{EBO}	6	
Collector current	I _C	200	mA
Total power dissipation	P _{tot}		mV
<i>T</i> _S ≤ 71°C		330	
<i>T</i> _S ≤ 115°C		250	
Junction temperature	T _i	150	О°
Storage temperature	T _{stg}	-65 150	

LSTM excels at relation extraction from text Xu et al., 2015; Miwa et al., 2016; Zhang et al., 2016

Problem: LSTM networks struggle to capture the multimodal characteristics of richly formatted data.

Augmenting LSTM with Multimodal Features

Transistor Datasheet

We use the multimodal information stored in the *document* to extract basic multimodal features:

- Structural features
 - Tabular features
 Visual features

Augmentation with multimodal features captures signals a traditional LSTM would miss.

Signals from different modalities can be useful to find the information.

Fonduer: a KBC system that takes advantage of both techniques to reason about all available signals.

The impact of multimodal features

For transistor datasheets...

Multimodal features significantly impact the quality of extraction

Fonduer in the wild

Empirical results & real-world uses

Fonduer

Same set of documents

Human-created

10 years

1.0x extractions

Machine-created

<6 months

1.59x extractions

Precision 0.89

How people use Fonduer in industry

Input: User-customized HTML auction pages → **Output:** Structured knowledge base

Knowledge Base Construction from Richly Formatted Data

- Fonduer helps build high-quality KBC from richly formatted data
- Allows users to leverage multimodal signals
- Augments deep learning model with features from each data modality
 to achieve high quality
 Q
- Fonduer is supporting real world applications

Thank you! Sen Wu (senwu@cs.stanford.edu)

https://github.com/HazyResearch/fonduer

The Fonduer data model

Richly formatted data

SMBT3904...MMBT3904

NPN Silicon Switching Transistors

- High DC current gain: 0.1 mA to 100 mA
- Low collector-emitter saturation voltage

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CEO}	40	V
Collector-base voltage	V _{CBO}	60	
Emitter-base voltage	V _{EBO}	6	
Collector current	I _C	200	mA
Total power dissipation	P _{tot}		mV
<i>T</i> _S ≤ 71°C		330	
<i>T</i> _S ≤ 115°C		250	
Junction temperature	T _i	150	°C
Storage temperature	T _{stg}	-65 150	

Fonduer automatically parses the richly formatted data into the data model that:

Preserves structure/semantics across modalities

- Unifies a diverse variety of formats and styles
- □ Serves as the formal representation in KBC

Data cleaning

We want to detect and repair errors in a dataset

University of Chicago, Cicago, IL

Where does data cleaning come up? All analytics!

Urban data

A simple example

Chicago's food inspection dataset

Constraints and minimality

c1: DBAName \rightarrow Zip

Functional dependencies

c2: Zip \rightarrow City, State

c3: City, State, Address \rightarrow Zip

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608

Bohannon et al., 2005, 2007; Kolahi and Lakshmanan , 2005; Bertossi et al., 2011; Chu et al., 2013; 2015 Fagin et al., 2015

Constraints and minimality

Functional dependencies

c1: DBAName \rightarrow Zip

c2: Zip \rightarrow City, State c3: City, State, Address \rightarrow Zip

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608

Action: Fewer erroneous than correct cells; perform minimum number of changes to satisfy all constraints

Constraints and minimality

c1: DBAName \rightarrow Zip

Functional dependencies

c2: Zip \rightarrow City, State

c3: City, State, Address \rightarrow Zip

	DBAName	AKAName	Address	City	State	Zip	
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609	
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609	Error;
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609	code is
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608	60608

Does not fix errors and introduces new ones.

External information

Matching dependencies
m1: $\operatorname{Zip} = \operatorname{Ext}_{-}\operatorname{Zip} \to \operatorname{City} = \operatorname{Ext}_{-}\operatorname{City}$
m2: $\operatorname{Zip} = \operatorname{Ext}_{\operatorname{Zip}} \rightarrow \operatorname{State} = \operatorname{Ext}_{\operatorname{State}}$
m3: City = Ext_City \land State = Ext_State \land

 $\land Address = Ext_Address \rightarrow Zip = Ext_Zip$

External list of addresses

Ext_Address	Ext_City	Ext_State	Ext_Zip
3465 S Morgan ST	Chicago	IL	60608
1208 N Wells ST	Chicago	IL	60610

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608

Fan et al., 2009; Bertossi et al., 2010; Chu et al., 2015

External information

Matching dependencies	
m1: $\operatorname{Zip} = \operatorname{Ext}_{\operatorname{Zip}} \to \operatorname{City} = \operatorname{Ext}_{\operatorname{City}}$	
m2: $Zip = Ext_Zip \rightarrow State = Ext_State$	
m3: $City = Ext_City \land State = Ext_State/$	٨

 $\land Address = Ext_Address \rightarrow Zip = Ext_Zip$

External list of addresses

Ext_Address	Ext_City	Ext_State	Ext_Zip
3465 S Morgan ST	Chicago	IL	60608
1208 N Wells ST	Chicago	IL	60610

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608

Action: Map external information to input dataset using matching dependencies and repair disagreements

External information

Matching dependencies
m1: $Zip = Ext_Zip \rightarrow City = Ext_City$

- m2: $Zip = Ext_Zip \rightarrow State = Ext_State$
- m3: City = Ext_City \land State = Ext_State \land

 $\wedge \, Address = Ext_Address \rightarrow Zip = Ext_Zip$

External list of addresses

Ext_Address	Ext_City	Ext_State	Ext_Zip
3465 S Morgan ST	Chicago	IL	60608
1208 N Wells ST	Chicago	IL	60610

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608

External dictionaries may have limited coverage or not exist altogether

Quantitative statistics

Reason about co-occurrence of values across cells in a tuple Estimate the distribution governing each attribute

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608

Example: Chicago co-occurs with IL

Hellerstein, 2008; Mayfield et al., 2010; Yakout et al., 2013

Quantitative statistics

Reason about co-occurrence of values across cells in a tuple Estimate the distribution governing each attribute

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608

Again, fails to repair the wrong zip code

Let's combine everything

	DBAName	AKAName	Address	City	State	Zip	
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609	
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609	
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609	
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608	

Constraints and minimality

External data

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	L	60608
+4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608

Quantitative statistics

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608

Different solutions suggest different repairs
Probabilistic data repairs

Input

Dataset to be cleaned						
	DBAName	Address	City	State	Ζίρ	
1	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL.	60508	
2	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL.	60609	
13	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL.	60609	
64	Johnnyo's	3465 S Morgan ST	Cicago	IL.	60608	

Denial Constraints

el i	DBA	×.	**	e -	+ Zip
c‡:	Zp.	-+	C	kγ.	State
1.	Car.	14.1	-		dilaren .

Matching Dependencies

Zip

m1: Zip = Eat.Zip → City = Eat.City m2: Zip = Eat.Zip → State = Eat.State m3: City = Eat.City ∧ State = Eat.State∧ ∧ Address = Eat.Address → Zip = Eat.Zip

External Information					
Ext.Address	Dri, Diy	Ext.State	84.89		
2460 S Margan	Orcago	κ.	1018		
1208 N Werls	Oricago	6	60010		
219 E Gre 57	Oricipa	8	6001		
2906-W	Oricago	τ.	6962		

The HoloClean Framework

Proposed Cleaned Dataset DBAName Address City State Zip 3465.8 John t1 Chicago IL. 60608 Veliotis Sr. Morgan ST 3465 S John t2 Chicago IL. 60608 Velicits Sr. Morgan ST 3465 S John t3 Chicago 60608 Ц. Morgan ST Veliotis Sr. John 3465 S 14 Chicago IL. 60608 Veliotis Sr. Morgan ST Marginal Distribution of Cell Assignments Possible Values Probability Cell 60608 0.84 t2.Zip 60609 0.16 Chicago 0.95 t4.City Cicago 0.05

John Veliotis Sr.

Johnnyo's

t4.DBAName

Output

0.99

0.01

Probabilistic data repairs

Input

Dataset to be cleaned						
	DBAName	Address	City	State	Ζρ	
1	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL.	60608	
2	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL.	60609	
3	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL.	60609	
4	Johnnyo's	3465 S Morgan ST	Cicago	IL.	60608	

Denial Constraints

el i	DBA	Name	$\rightarrow Z_{P}$		
dî.	Zp ·	+ Cit	c. State		
di.	City.	State.	Address	- 14	Z_{2n}

Matching Dependencies

m1: $Zip = Eat.Zip \rightarrow City = Eat.City$ m2: $Zip = Eat.Zip \rightarrow State = Eat.State$ $m3: City = Eat.City <math>\land$ State = Eat.State \land \land Address = Eat.Address \rightarrow Zip = Eat.Zip

Extern	and In	torm	ation
EXION	1411 11	norm	auor
Ext.Address	DI.DV	Ext. State	84.79
2460 S Morgan ST	Oncape	κ.	-
1206 N Vients 67	Oricago	۴.	60010
258 E Gra 57	Oricago	٤.	6001
2906-W	Oriospi	τ.	69623

Output

	Prop	pose	ed Clea	ned Dat	aset	
	DBAName	Ad	kiress	City	Stat	e Zip
t1	John Veliotis Sr.	34 Mor	465 S rgan ST	Chicago	IL.	60608
t2	John Veliotis Sr.	34 Mor	465 S rgan ST	Chicago	IL	60608
t3	John Veliotis Sr.	34 Mor	465 S rgan ST	Chicago	IL.	60608
14	John	3465 S Morgan ST		Chicana		60608
	Veliotis Sr.	Mor	rgan ST	Chicago		00000
	Veliotis Sr.	Mor Mar of (rginal [Cell As	Distributi	on ts	0000
	Veliotis Sr.	Mor Mar of (rginal [Cell As Possi	Distributi signmen ible Value	on ts	Probability
	Cell	Mar of (rginal (Cell As Poss	Distributi signmen ble Value 50608	on ts	Probability 0.84
	Cell t2.Zip	Mar of (rginal (Cell As Poss	Distributi signmen ble Value 50608 50609	on ts	Probability 0.84 0.16
	Cell t2.Zip	Mar of (rginal (Cell As Poss	Distributi signmen ble Value 50608 50609 blcago	on ts	Probability 0.84 0.16 0.95
	Cell t2.Zip t4.City	Mar of (rginal [Cell As Possi	Distributi signmen ble Value 50608 50609 thicago Cicago	on ts BS	0.84 0.16 0.95 0.05
	Cell t2.Zip t4.City	Mar of (rgan ST rginal [Cell As Possi C C John	Distributi signmen ble Value 50608 50609 chicago Cicago Veliotis S	on ts BS	Probability 0.84 0.16 0.95 0.05 0.99

HoloClean [VLDB'17]

Error detection in HoloClean

HoloClean focuses on repairing. Error detection is treated as black-b

Input

	Address	City	State	Zip
t1	3465 S Morgan ST	Chicago	IL	60608
t2	3465 S Morgan ST	Chicago	IL	60609
t3	3465 S Morgan ST	Chicago	IL	60609
t4	3465 S Morgan ST	Cicago	IL	60608

```
Error Detection
Example:
\operatorname{Zip} \to \operatorname{City}
External:
```

Ext_Address	Ext_City	Ext_State	Ext_Zip
3465 S Morgan ST	Chicago	IL	60608
1208 N Wells ST	Chicago	IL	<mark>60610</mark>

Output

	Address	City	State	Zip
t1	3465 S Morgan ST	Chicago	IL	60608
t2	3465 S Morgan ST	Chicago	IL	60609
t3	3465 S Morgan ST	Chicago	IL	60609
t4	3465 S Morgan ST	Cicago	IL	60608

Error detection splits input into correct and potentially erroneous cells.

- : Correct cells
 - : Potentially erroneous cell

Probabilistic data repairs

Input

Dataset to be cleaned						
	DBAName	Address	City	State	Ζφ	
t1	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL.	60508	
12	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL.	60609	
13	John Veliotis Sr.	3465 S Morgan ST	Chicago	L	60609	
64	Johnnyo's	3465 S Morgan ST	Cicago	L	60608	

Denial Constraints

Externe	100		100.00
LAUGHING		i ure	11100

e1)	DBA	Name	-+ Zip		
c2:	Zp -	+ Cit	c, State		
e\$k	City,	State,	Address	-0	$\mathbb{Z}p$

Matching Dependencies

and: $Zip = Ext.Zip \rightarrow City = Ext.City$ m2 Zip = Ext.Zip -> State = Ext.State m2: City = Ext.City /.State = Ext.State/. \land Address = Ext.Address \rightarrow Zip = Ext.Zip

Extern	nal Ir	form	ation
Ext.Address	DI.DV	Ext. State	84.29
2480 S Margan	Oncape	۹.	-
1208 N Werls	Oricago	8	60010
218 E Gra 57	Oricage	8.	60011
2906-W	Oricago	τ.	60422

The HoloClean Framework

Output

	Prop	pose	d Clea	ned Data	aset	
	DBAName	Ad	dress	City	State	a Zip
t1	John Veliotis Sr.	34 Mor	65 S gan ST	Chicago	IL.	60608
t2	John Veliotis Sr.	3465 S Morgan ST		Chicago	IL.	60608
t3	John Veliotis Sr.	34 Mor	65 S gan ST	Chicago	IL.	60608
14	John	34	465 S	Chicago	IL.	60608
-	Veliotis Sr.	Mor	gan ST			
	Veliotis Sr.	Mar of (gan ST rginal (Cell As	Distributi signmen	on ts	
	Cell	Mar of (gan ST rginal [Cell As Possi	Distributi signmen ible Value	on ts	Probability
	Cell	Mar of C	gan ST rginal [Cell As Poss	Distributi signmen Ible Value 50608	on ts 85	Probability 0.84
	Cell t2.Zip	Mar of (gan ST rginal [Cell As Possi	Distributi signmen ble Value 50608 50609	on ts IIS	Probability 0.84 0.16
	Cell t2.Zip	Mar of (gan ST rginal [Cell As Possi	Distributi signmen ble Value 50608 50609 hicago	on ts Is	Probability 0.84 0.16 0.95
	Cell t2.Zip t4.City	Mar of (gan ST Cell As Possi	Distributi signmen ble Value 50608 50609 blicago Cicago	on ts	Probability 0.84 0.16 0.95 0.05
	Cell t2.Zip t4.City	Mar of (gan ST rginal I Cell As Possi C C John	Distributi signmen ble Value 50608 50609 hicago Cicago Veliotis S	on ts es l	Probability 0.84 0.16 0.95 0.05 0.99

HoloClean [VLDB'17]

HoloClean's model for data repairs

Probabilistic data repairs

Input

	Dataset to be cleaned						
	DBAName	Address	City	State	Ζίρ		
1	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL.	60508		
12	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL.	60609		
13	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL.	60609		
64	Johnnyo's	3465 S Morgan ST	Cicago	L	60608		

Denial Constraints

	0.0110.0101100	
el: DBANe	$me \rightarrow Zip$	

r2: Zip \rightarrow City, State r3: City, State, Address \rightarrow Zip

Matching Dependencies

m1: Zip = Eat.Zip → City = Eat.City m2: Zip = Eat.Zip → State = Eat.State m3: City = Eat.City ∧ State = Eat.State∧ ∧ Address = Eat.Address → Zip = Eat.Zip

External Information Ext.Address Ext.Day Ext.State Ext.Zp 2460 S Morgan Orange н. 1.00 1.77 1206 IN Vite Its Driveges н. 600-0 25HE Env ST Onicago 60011 н. 2906 W н. 0000 Owner Carmate Rel

The HoloClean Framework

Output

	Prop	pose	d Clea	ned Dat	aset	
	DBAName	Ad	dress	City	Stat	e Zip
t1	John Veliotis Sr.	34 Mon	65 S gan ST	Chicago	IL.	60608
t2	John Veliotis Sr.	34 Mon	65 S gan ST	Chicago	IL.	60608
t3	John Veliotis Sr.	34 Mor	65 S gan ST	Chicago	IL.	60608
14	John Veliotis Sr.	34 Mor	65 S gan ST	Chicago	IL.	60608
		Mar	minal f	Notelburth		
		Mar of C	ginal (Cell As	Distributi signmen	on ts	
	Cell	Mar of C	ginal I Cell As Possi	Distributi signmen ible Value	on ts	Probability
	Cell	Mar of C	ginal (Cell As Poss	Distributi signmen ible Value 60608	on ts	Probability 0.84
	Cell t2.Zip	Mar of C	ginal (Cell As Poss	Distributi signmen ible Value 60608 60609	on ts 85	Probability 0.84 0.16
	Cell t2.Zip	Mar of C	ginal C Cell As Possi	Distributi signmen ible Value 60608 60609 ihicago	on ts	Probability 0.84 0.16 0.95
	Cell t2.Zip t4.City	Mar of C	rginal I Cell As Possi	Distributi signmen ible Value 60608 60609 chicago Cicago	on ts	Probability 0.84 0.16 0.95 0.05
	Cell t2.Zip t4.City	Mar of C	rginal I Cell As Possi	Distributi signmen ible Value 60608 60609 chicago Cicago Veliotis S	on ts es	Probability 0.84 0.16 0.95 0.05 0.99

HoloClean [VLDB'17]

HoloClean's model

Exponential family (canonical form) $\mathbf{w} = (w_1, w_2, \dots, w_s)^T$ $P(x|w) = \exp\left(\sum_{i=1}^s w_i T_i(x) - A(\mathbf{w})\right)$ HoloClean automatically generates a factor graph that captures:

- Co-occurrences
- Correlations due to constraints
- Evidence due to external

Repairing is a learning and inference problem: Learn parameters w (use SGD) and infer the marginal distribution for unknown variables (use Gibbs sampling)

Probabilistic data repairs

Input

	DBAName	Address	City	State	Ζίρ
1	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL.	60508
12	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL.	60609
13	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL.	60609
64	Johnnyo's	3465 S Morgan ST	Cicago	IL.	60608

Denial Constraints

e1)	DBANs	ane -+ Zip
12	$Z_{\rm IP} \rightarrow$	City, State
-7-	Circ. St.	ste felderer

Matching Dependencies

nd: $Zip = Eat, Zip \rightarrow City = Eat, City$ nd: $Zip = Eat, Zip \rightarrow State = Eat, State$ $nd: City = Eat, City \wedge State = Eat, State \wedge$ $<math>\wedge Aultron = Eat, Address \rightarrow Zip = Eat, Z$

Cicago	IL.	606	80
Exter	nal Ir	form	atior
Ext.Address	BALDAY	Ext, State	84.89
2460 S Margan 87	Oncaps	к.	6068
1208 N Werts 67	Oricago	а.	600.0
259 E 6re 57	Oricage	8.	6001
2906 W	Oricipa	R	6002

Output

	Prop	posed	Clea	ned Dat	aset	
	DBAName	Addr	ess	City	State	Zip
t1	John Veliotis Sr.	3465 S Morpan ST		Chicago	IL.	60608
t2	John Veliotis Sr.	3465 Morga	5 S n ST	Chicago	IL.	60608
t3	John Veliotis Sr.	3465 Morga	5 S n ST	Chicago	IL.	60608
	to be	John 3465 S otis Sr. Morgan ST				
14	Veliotis Sr.	Morga	n ST	Chicago		60608
14	Veliotis Sr.	Morga Margi of Ce	n ST inal (Chicago Distributi signmen	on ts	60608
14	Veliotis Sr.	Morga Margi of Ce	n ST inal (II As Possi	Chicago Distributi signmen ible Value	on ts	Probability
14	Veliotis Sr.	Morga Margi of Ce	n ST inal (II As Possi	Chicago Distributi signmen ible Value 60608	on ts	Probability 0.84
t4	Veliotis Sr.	Morga Margi of Ce	n ST Inal (II As Poss	Chicago Distributi signmen ible Value 60608 60609	on ts	0.84 0.16
14	Cell t2.Zip	Morga Margi of Ce	n ST inal (II As Possi	Chicago Distributi signmen ible Value 50608 50609 chicago	on ts	0.84 0.16 0.95
14	Cell t2.Zip t4.City	Morga Margi of Ce	n ST inal I ell As Possi	Chicago Distributi signmen ible Value 60608 60609 Chicago Cicago	on ts BS	0.84 0.16 0.95 0.05
14	Cell t2.Zip t4.City	Morga Margi of Ce	n ST inal (ell As Possi C (John	Chicago Distributi signmen ible Value 60608 60609 chicago Cicago Veliotis S	on ts BS	Probability 0.84 0.16 0.95 0.05 0.99

HoloClean is a compiler for automatically generating probabilistic programs for data cleaning

HoloClean in practice

HoloClean: our approach combining all signals and using inference Holistic[Chu,2013]: state-of-the-art for constraints & minimality KATARA[Chu,2015]: state-of-the-art for external data SCARE[Yakout,2013]: state-of-the-art ML & qualitative statistics

Scaling probabilistic inference

Challenge: Inference under constraints is #P-complete

Applying probabilistic inference naively does not scale to data cleaning instances with millions of tuples

Idea 1: Prune domain of random variables.

Idea 2: Relax constraints over sets of random variables to features over independent random variables.

Tuple ID	University	State
t1	U of Chicago	IL
t2	U of Chicago	IL
t3	U of Chicago	СА

"The same
"The same
Functional dependency:University must
University → State be in the same
State"

Example: FDs correspond to constraints over random variables (RVs)

 $t1.University = t3.University \implies t1.State = t3.State$

Naive globally consistent model: It introduces correlations over four random variables. We have possible worlds for such correlations. D: domain of random variables

Tuple ID	University	State
t1	U of Chicago	IL
t2	U of Chicago	IL
t3	U of Chicago	СА

"The same
"The same
Functional dependency:University must
University → State be in the same
State"

Relax constraints to features over independent RVs (corresponds to a voting model)

Example:

 $t1.University = U \text{ of Chicago } \implies IL = CA$

U of Chicago = $t3.University \implies IL = CA$

U of Chicago = U of Chicago \implies t1.State = CA

U of Chicago = U of Chicago \implies IL = t3.State

Only 4*D* possible worlds considered

HoloCleans' locally consistent model introduces features over independent random variables.

	Address	City	State	Zip
t1	3465 S Morgan ST	Chicago	IL	60608
t2	3465 S Morgan ST	Chicago	IL	60609
t3	3465 S Morgan ST	Chicago	IL	60609
t4	3465 S Morgan ST	Cicago	IL	60608

	Address	City	State	Zip
t1	3465 S Morgan ST	Chicago	IL	60608
t2	3465 S Morgan ST	Chicago	IL	60609
t3	3465 S Morgan ST	Chicago	IL	60609
t4	3465 S Morgan ST	Cicago	IL	60608

We have one relaxed factor for each value in the domain of the RV

	Address	City	State	Zip
t1	3465 S Morgan ST	Chicago	IL	60608
t2	3465 S Morgan ST	Chicago	IL	60609
t3	3465 S Morgan ST	Chicago	IL	60609
t4	3465 S Morgan ST	Cicago	IL	60608

We have one relaxed factor for each value in the domain of the RV

Relaxing constraints: In practice

Faster compilation, learning, and inference when we do not prune the RV domain

Relaxing constraints: In practice

Increased robustness (more accurate repairs) when RV domain is ill-specified (no heavy pruning used)

Data cleaning is a ML problem

The HoloClean Framework

- candidate repair generation
- Compilation to factors/tensors

3. Repair Module

- PYTÖRCH
- Ground probalistic model
- Statistical learning (weights)
- Probabilistic inference

- Combine disparate signals to perform accurate data repairs
- 2. Data cleaning is a statistical learning and inference problem
 - Transition from logic to
 - 3. Connectibility to data vs knowledge tradeoffs in structured prediction

A quest for rigor

1. HoloClean provided empirical evidence the probabilistic methods work better

2. The ad-hoc relaxations for efficiency give more accurate data repairs

> Why did logic fail us? and Why does relaxing constraints work?

Back to the foundations: Logic and Databases

- 1. In 1969, Edgar F. Codd introduced the relational data model
- 2. In t007, C.J. Date wrote that logic and databases are "inextricably intertwined"

Two main uses of logic in databases

- 1. Logic is used as a database query language to express questions asked against databases.
- 2. Logic is used as a specification language to express integrity constraints in databases.

Noise models in DB theory

Coping with Inconsistent Databases

Two different approaches:

- Data Cleaning: Based on heuristics or specific domain knowledge, the inconsistent database is transformed to a consistent one by modifying (adding, deleting, updating) tuples in relations.
 - This is the main approach in industry (e.g., IBM InfoSphere Quality Stage, Microsoft DQS).
 - More engineering than science as quite often arbitrary choices have to be made.
- Database Repairs: A framework for coping with inconsistent databases in a principled way and without "cleaning" dirty data first.

Slide by Phokion Kolaitis [SAT 2016]

Noise models in DB theory

Database Repairs

Definition (Arenas, Bertossi, Chomicki – 1999) Σ a set of integrity constraints and *I* an inconsistent database. A database *J* is a *repair* of *I* w.r.t. Σ if

- *J* is a consistent database (i.e., $J \models \Sigma$);
- J differs from I in a minimal way.

Fact

Several different types of repairs have been considered:

- ► Set-based repairs (subset, superset, ⊕-repairs).
- Cardinality-based repairs
- Attribute-based repairs
- Preferred repairs

Slide by Phokion Kolaitis [SAT 2016]

Noise models outside DB

Noise models outside DB

Noisy Channel

- 1. We see an observation *x* in the noisy world
- 2. Find the correct world *w*

$$\hat{w} = \arg\max_{w \in W} P(w|x)$$

Applications

Speech, OCR, Spelling correction, Part of speech tagging, machine translations, etc...

Let's try new foundations for data cleaning! ...and see how they relate to logic.

(A) Schema, Attribute Domain, and Constraint Specification

(B) The Two-Actor Generation Process

[Work under submission, 2018]

Intentional Data Model

Step 1: Tuples are generated independently

Step 2: Logical constraints ensure consistency

$$\mathcal{M}(D) \stackrel{\text{def}}{=} \frac{1}{Z} \times \mathcal{P}(D) \times \prod_{\varphi \in \Phi} e^{-w(\varphi) \cdot |V(D,\varphi)|}$$

Log-linear model penalizing invalid "possible worlds"

(A) Schema, Attribute Domain, and Constraint Specification

(B) The Two-Actor Generation Process

Realizer Model

Probability assigned to an intended instance *I*

Conditional prob. of getting J given

We consider two models1. Insert unintended tuples (subset)2. Update values of existing tuples

These models capture the data errors considered in prior works

(A) Schema, Attribute Domain, and Constraint Specification

(B) The Two-Actor Generation Process

Tuple Identifiers

Computational problems

- 1. Cleaning: Find most probable *I*
- Probabilistic query answering (PQA): evaluate a query directly on J
- 3. Learning Intentional and Realizer models

(A) Schema, Attribute Domain, and Constraint Specification

(B) The Two-Actor Generation Process

Tuple Identifiers

Preliminary Results

- 1. Cleaning: Connections to minimum repairs
- 2. Cleaning is in P-time for key constraints
- 3. Connections to consistent query answering
- 4. Learning from **one** noisy database without training data

Probabilistic Cleaning vs. Minimal Repairs

Theorem

For a *subset realizer* with *low noise* probabilistic repairs and minimal subset repairs are equivalent.

Subset realizer: Noisy channel that introduces new tuples Low noise: probability of insertion from realizer lower than probability of insertion from intentional model

No assumptions on *tuple independence or attribute value independence.*

Probabilistic Cleaning vs. Minimal Repairs

Theorem

For an *update realizer* with *low noise* probabilistic repairs and cardinality minimal subset repairs are equivalent when (1) tuples are independent and (2) tuple attribute assignments are independent!

Update realizer: Noisy channel that permutes the values of cells (tuple attributes) **Low noise:** probability of update less than 0.5

Strong assumptions that violate the relational model!

A quest for rigor

1. HoloClean provided empirical evidence the probabilistic methods work better

2. The ad-hoc relaxations for efficiency give more accurate data repairs

> Why did logic fail us? and Why does relaxing constraints work?

How hard is structured prediction?

Cleaning is a structured prediction problem

Our relaxation corresponds to an approximation for structured prediction

Recent work is targeting hardness of structured prediction

Globerson et al., ICML 2015 Foster et al., AISTATS 2018

Setup: (with noise)

- known graph G=(V,E)
- unknown labeling X:V -> {0,1}
- given noisy parity of each edge
 flipped with probability p

Goal: (approximately) recover X.

Formally: want algorithm A: $\{+,-\}^{E} \rightarrow \{0,1\}^{\vee}$ that minimizes worst-case expected Hamming error: $\max_{X} \{E_{L\sim D(X)}[error(A(L),X]\}$

We are working on extensions to *categorical variables* and *hypergraphs*.