CS839: Probabilistic Graphical Models

Lecture 2: Directed Graphical Models

Theo Rekatsinas
Questions?

• Waiting list
• Questions on other logistics
1. Intro to Bayes Nets
Representing Multivariate Distributions

• If X_i’s are **conditionally independent** (as described by a PGM), the joint can be factored to a product of simpler terms, e.g.,

$$P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8) = P(X_1)P(X_2)P(X_3|X_1)P(X_4|X_2)P(X_5|X_2)P(X_6|X_3, X_4)P(X_7|X_6)P(X_8|X_5, X_6)$$

• If X_i’s are **independent**: $P(X_i|\cdot) = P(X_i)$

$$P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8) = P(X_1)P(X_2)P(X_3)P(X_4)P(X_5)P(X_6)P(X_7)P(X_8)$$
Notation

We will be using the notation from Koller and Friedman (at the end of the book)

• Random variable: X, Y, Z

• Random variable set (some time matrices): X, Y, Z

• Parameters: $\alpha, \beta, \gamma, \kappa, \theta$
Representation
-- example by Eric Xing

The Dishonest Casino
A casino has two dice:
• Fair die: $P(1) = P(2) = \ldots = P(6) = 1/6$
• Loaded die: $P(1) = P(2) = P(3) = P(5) = 1/10, P(6) = 1/2$

The dealer switches back and forth between fair and loaded die once every 20 turns

Game:
1. You bet X
2. You roll (always with a fair die)
3. Dealer rolls (maybe with a fair die, maybe with a loaded die)
4. Highest number wins $2X$
Representation
-- example by Eric Xing

You have a sequence of rolls from the dealer
1245526462146146136661664661...

Questions...
• How likely is this sequence, given our model of how the casino works? (Evaluation)
• What portion of the sequence was generated with a fair die, and what portion with a loaded one? (Decoding)
• How “loaded” is the loaded die? How “fair” is the fair die? How often does the casino player change from fair to loaded and back? (Learning)
Knowledge Engineering
-- example by Eric Xing

• Modeling random variables
 • Latent (hidden)
 • Observed
Knowledge Engineering
-- example by Eric Xing

• Modeling random variables
 • Latent (hidden)
 • Observed

• Modeling the structure
 • Causal
 • Generative
 • Coupling
Knowledge Engineering
-- example by Eric Xing

• Modeling random variables
 • Latent (hidden)
 • Observed

• Modeling the structure
 • Causal
 • Generative
 • Coupling

• Model probabilities
 • Conditional probabilities
 • Orders of magnitude
Hidden Markov Model

\[p(y_t | x_t) \text{ observation probability} \]

\[p(x_t | x_{t-1}) \text{ transition probability} \]

\[p(X, Y) = p(x_1) \prod_{t=1}^{T-1} p(x_{t+1} | x_t) \prod_{t'=1}^{T} p(y_{t'} | x_{t'}) \]
Bayesian Network

• A BN is a directed graph whose nodes represent the random variables and whose edges represent direct influence of one variable on another

• It is a data structure that provides the skeleton for representing a joint distribution compactly in a factorized way

• It offers a compact representation for a set of conditional independence assumptions about a distribution

• We can view the graph as encoding a generative sampling process executed by nature, where the value for each variable is selected by nature using a distribution that depends only on its parents.
Bayesian Network

• **Factorization Theorem:**

Given a DAG, the most general form of the probability distribution that is **consistent with** the graph factors according to “node given its parents”:

\[P(X) = \prod_{i=1:d} P(X_i | X_{\pi_i}) \]

where \(X_{\pi_i} \) is the set of parents of \(X_i \), \(d \) is the number of nodes (variables) in the graph.
Bayesian Network

• Factorization Theorem Example

\[
P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8) \\
= P(X_1)P(X_2)P(X_3|X_1)P(X_4|X_2)P(X_5|X_2) \\
P(X_6|X_3, X_4)P(X_7|X_6)P(X_8|X_5, X_6)
\]
Specification of a Bayesian Network

• Qualitative specification: structure and variables (roughly knowledge engineering)
 • Prior knowledge of causal relationships
 • Prior knowledge of modular relationships
 • Assessment from experts
 • Learning from data

• Quantitative specification: instantiation of conditional probability distributions
 • Conditional probability tables
 • Continuous distributions
2. Local Structure and Independence
Local structure

- **Common parent**
 - Fixing B *decouples* A and C

- **Cascade**
 - Knowing B *decouples* A and C

- **V-structure**
 - Knowing C *couples* A and B (knowing one variable explains the contribution of the other to a common child event)

Conditional independences

\[I(A \perp C | B) \]

\[I(C \perp A | B) \]

Three foundational building blocks (compact language)

for creating complex BNs
Why a graphical specification?

- Consider a factoring of $P(A, B, C) = P(B)P(A|C)P(B|C)$
- Consider $I(A \perp C|B)$
- Can we show that $I(P_\theta(A, B, C)) \equiv I(A \perp C|B)$?
I-maps

- **Def:** Let P be a distribution over \mathbf{X}. We define $I(P)$ to be the set of independence assertions of the form $(X \perp Y | Z)$ that hold in P (despite how we set the parameter-values).

- **Def:** Let K be any graph object associated with a set of independencies $I(K)$. We say that K is an I-map for a set of independencies I if $I(K) \subseteq I$

- We say that graph G is an I-map for P if G is an I-map for $I(P)$, where we use $I(G)$ as the set of independencies associated.
I-maps

• For F to be an I-map of P, it is necessary that G does not mislead us regarding independencies in P:
 • Any independence that G asserts must also hold in P. Conversely, P may have additional independencies that are not reflected in G

• Example
From $I(G)$ to local Markov assumptions of BNs

• A BN with structure G is a directed acyclic graph whose nodes represent random variables X_1, \ldots, X_n.

• **Local Markov assumptions** (one way to specify independencies:)

• **Def:**

 Let Pa_{X_i} denote the parents of X_i in G and $NonDescendants_{X_i}$ denote the variables in the graph that are not descendants of X_i. Then G encodes the following set of **local conditional independence assumptions** $I_i(G)$:

 $$I_i(G) : \{X_i \perp NonDescendants_{X_i} | Pa_{X_i} : \forall I\}$$

 In other words, each node X_i is independent of its non-descendants given its parents.
Graph separation criterion

D-separation criterion for Bayesian networks (D for Directed edges):

Def: variables x and y are **D-separated** (conditionally independent) given z if they are separate in the **moralized** ancestral graph.

Example:

![Diagram showing original graph, moralized ancestral graph, and moral ancestral graph.](image)
Active trail condition

- **Causal trail** \(X \rightarrow Z \rightarrow Y \): active if and only if \(Z \) is not observed.
- **Evidential trail** \(X \leftarrow Z \leftarrow Y \): active if and only if \(Z \) is not observed.
- **Common cause** \(X \leftarrow Z \rightarrow Y \): active if and only if \(Z \) is not observed.
- **Common effect (V-structure)** \(X \rightarrow Z \leftarrow Y \): active if and only if either \(Z \) or one of \(Z \)'s descendants is observed.

Let \(X, Y, Z \) be three sets of nodes in \(G \). We say that \(X \) and \(Y \) are \(d \)-separated given \(Z \), denoted \(d-sep_G(X; Y|Z) \), if there is no active trail between any node \(X \in X \) and \(Y \in Y \) given \(Z \).
Global Markov properties of BN

• X is d-separated (directed-separated) from Z given Y if we cannot send a ball from any node in X to any node in Z using the “Bayes-ball” algorithm.

\[
I(G) = \{X \perp Z \mid Y : \text{dsep}_G(X; Z \mid Y)\}
\]
Quantitative specification of P

- Separation properties in the graph imply independence properties about the associated variables

- **Equivalence Theorem**

 For a graph G,

 Let D_1 denote the family of all distributions that satisfy $I(G)$. Let D_2 denote the family of all distributions that factor according to $G

 \[P(X) = \prod_{i=1:d} P(X_i | X_{\pi_i}) \]

 Then $D_1 \equiv D_2$.

- For the graph to be useful, any conditional independence properties we can derive from the graph should hold for the probability distribution that the graph represents
Specification of BNs

• Conditional probability tables (CPTs)
Specification of BNs

• Conditional probability density functions (CPDs)

\[
A \sim N(\mu_a, \Sigma_a) \quad B \sim N(\mu_b, \Sigma_b)
\]

\[
C \sim N(A + B, \Sigma_c)
\]

\[
D \sim N(\mu_c + C, \Sigma_d)
\]
Summary of BN semantics

- **Def:** A Bayesian network is a pair \((G,P)\) where \(P\) factorizes over \(G\), and \(P\) is specified as a set of CPDs associated with \(G\)’s nodes.

- Conditional independencies imply factorization
- Factorization according to \(G\) implies the associated conditional independencies.
Summary of BN semantics

• **Def:** A Bayesian network is a pair \((G,P)\) where \(P\) factorizes over \(G\), and \(P\) is specified as a set of CPDs associated with \(G\)’s nodes.

• Conditional independencies imply factorization

• Factorization according to \(G\) implies the associated conditional independencies.

• Are there **other independences** that hold for every distribution \(P\) that factorizes over \(G\)?
Soundness and completeness

• **Soundness:**
 • **Theorem:** if a distribution P factorizes according to G, then $I(G) \subseteq I(P)$.

• **Completeness:**
 • **Claim:** for any distribution P that factorizes over G, if $(X \perp Y \mid Z) \in I(P)$ then $d - sep_G(X; Y \mid Z)$
Soundness and completeness

• Soundness:
 • **Theorem:** if a distribution P factorizes according to G, then $I(G) \subseteq I(P)$.

• Completeness:
 • **Claim:** for any distribution P that factorizes over G, if $(X \perp Y \mid Z) \in I(P)$ then $d - sep_G(X; Y \mid Z)$

• Think of this:
 • If X and Y are not d-separated given Z in G, then X and Y are dependent in all distributions P that factorize over G
 • Is this true?
Soundness and completeness

- Completeness:
 - **Claim**: for any distribution P that factorizes over G, if $(X \perp Y | Z) \in I(P)$ then
 $$d = sep_G(X; Y | Z)$$
Soundness and completeness

• Completeness:
 • **Claim:** for any distribution P that factorizes over G, if $(X \perp Y \mid Z) \in I(P)$ then

 $d \leftarrow\text{sep}_G(X; Y \mid Z)$

• **Theorem:** Let G be a BN graph. If X and Y are not d-separated given Z in G, then X and Y are dependent in some distribution P that factorizes over G.
Uniqueness of BNs

• Very different BN graphs can actually be equivalent, in that they encode precisely the same set of conditional independence assertions.

\[(X \perp Y \mid Z).\]
l-equivalence

• Def: Two BN graphs G_1 and G_2 over X are l-equivalent if $I(G_1) = I(G_2)$.

\[(X \perp Y \mid Z)\]

• Any distribution P that can be factorized over one of these graphs can be factorized over the other. Implications when trying to determine directionality of influence.
Simple BNs

• Conditionally Independent Observations
Simple BNs

- Plate model

Plate = rectangle in graphical model

variables within a plate are replicated in a conditionally independent manner
Simple BNs

- Hidden Markov Model
Summary

• A Bayesian network is a pair \((G, P)\) where \(P\) factorizes over \(G\), and where \(P\) is specified as a set of local conditional probability distributions.

• A BN captures “causality”, “generative schemes”, “asymmetric influences” etc.

• Local and global independence properties are identifiable via d-separation criteria