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Probabilistic Graphical Models

Second-half
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What have we seen so far

* Representations * Approximate Inference
* Directed GMs * Variational methods
* Undirected GMs e Sampling

e Exact Inference
e Variable Elimination
* Sum-Product
* Junction trees

* Learning
* Parameter learning
e Structure learning
* Missing values



Next classes (6 till Thanksgiving + 4
afterwards)

» Advanced Graphical Models * Applications
* Spectral methods for GMs * Knowledge Base
e Markov-logic Networks Construction
* Deep learning and GMs * Data Cleaning
» Comparison-Overview * Project presentations

* DL models 1 (VAEs/GANs/domain
knowledge in DNNs)

* DL models 2 (CNNs/RNNs/Attention)

* Scalable Systems
 Distributed Algorithms for ML
 Distributed Systems for ML



Project Deliverables

* Proposal due: Nov 8
* Mid-report due: Nov 27
* Proposal presentations: Dec 11
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Latent Variable Models

Sequence models
A s
Parsing /\ " Ho. et al. 2012
NP VP~ Mixed membership models
/\‘) /\
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| | | |

the dog saw him



Latent Parameters (EM)

latent variables

& (unobserved in

training data)

—

Observed variable

P[X1, ... X5, Hi, ... Hs] = P[Hi] | | P[Hi| Hiot] [ [ P[XG| Hi]
=2 1=1

e Latent variables are not observed in the data: use EM to learn
parameters

* Slow and local minima



Spectral Learning

* Different paradigm of learning in the presence of latent variables
* Based on linear algebra

* Theoretically
* Provably consistent
e Can offer deep insights into identifiability

* Practically
* Local minima free
e Faster than EM: in some cases 10-100x speed-up



References

* Hsuetal.2009 — Spectral HMMs
* Siddigietal.2009 — Features in Spectral Learning

* Parikhetal.2011/2012 — Tensors to Generalize to Trees/Low Treewidth
Graphs

* Cohen et al. 2012/2013 — Spectral Learning of latent PCFGs

* Songetal.2013-Spectral Learning as Hierarchical Tensor
Decomposition



Focus on Predictions

* In many applications that use latent variable models, the end task is
not to recover the latent states but use the model for prediction
among the observed variables

* Example: predict the future given the past

past— 00
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Focus on Predictions

* Only use quantities related to the observed variables:
P[X1, X2, X3, X4, X;5]
* Do not care about latent variables explicitly

* Do we still need EM to learn the parameters?



Focus on Predictions

* Why don’t we just integrate them out?

12



Focus on Predictions

* Why don’t we just integrate them out?
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Marginal does not factorize

P[X1, Xo, X3, X4, X5] = Z P[H,|P[H, Jl—[IP

* Does not factorize due to the outer sum

| Hi-a] | | PXi|H:)

1=1
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HMM and cliques

* Isan HMM different from a clique?
* It depends on the number of latent states!
* Example:

15



What if H has only one state?

H




What if H has only one state?

X1 X, X3

* The observed variables are independent
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What if H has only many states?

X1 X X3

o If X1, X2, X3 have m states each and H has m?3

18



What if H has only many states?

X4 X, X3
 If X1, X2, X3 have m states each and H has m?3
* The model can be exactly equivalent to a clique
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What about cases between 1 and m3?

* Under existing methods, latent models require EM regardless of the
number of hidden states

* Is there a formulation of latent variable models where the difficulty of
learning is a function of the number of latent states?

* We will answer this by adopting a spectral view.



Sum Rule (Matrix Form)
 Sum Rule IP[X] — Z ]P)[X‘Y]HD[Y]
-

* Equivalent view using Matrix Algebra

PIX] = PXIY] x P[Y]

1) = (o

X
X

Py
PlX

0y =0] P[X =0[Y =1] P[Y = 0]
1|Y =0] P[X =1|Y =1] ) X ( P[Y = 1] )



Chain Rule (Matrix Form)
csumrule P[X,Y] = P[X|Y]P[Y] = P[Y|X]P[Y]

* Equivalent view using Matrix Algebra

PIX,Y]= PIX]Y] x PloY]

"PIX=0Y=0] PIX=0Y =1]
( PIX=1Y=0] PIX=1Y =1] )
PIX =0]Y =0] P[X=0|Y

( PIX=1Y =0] P[X=1|Y

|

H ) ><( ?[Y“—. 0] ?[y“: ! )



GMs: The linear algebra view

A and B have m
states each.

* |s there something we can say about this matrix?
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Independence: The linear algebra view

A B

© O

* What if A and B are independent?

A and B have m
states each.
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Independence: The linear algebra view

ABO o

IP’[4—1 B=1],..PA=1, B—m])

B (P[A = 1](P[B = 1],...,P[B = m]))

* What can we say about this matrix?
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Independence: The linear algebra view

ABO o

IP’H =1,B=1},...,.P[A=1,B = m])

B (P[A = 1](P[B = 1],....,P[B = m]))

* What can we say about this matrix? It is rank one
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Independence and Rank

A B

o o ’P[A, B] has rank m (at most)
A B

o o P|A, B| has rank 1

e What about rank in between 1 and m?




Low Rank Structure

* A and B are not marginally independent (conditionally independent
given X)
A X B

0 OO

* If X has k states (while A and B have m states):

rank(P|A, B|) <k
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Low Rank Structure

A X B
P|A, B] PlAIX] P(@X) P[B|X]'

—

rank <k rank < k rank <k rank <k




Spectral View

 Latent variable models encode low rank dependencies among variables
(both marginal and conditional)

e Use tools from linear algebra to exploit this structure:
* Rank
* Eigenvalues
* SVD
* Tensors



Example: HMM

r——
)

>

v

k states

m states

has rank k
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Low Rank Matrices Factorize

M = ILIJR 1fMhasrankk

m by n mbyk kbyn

We already know a factorization (introduced by the graph structure)

k states

Pl X12), X341

m states
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Low Rank Matrices Factorize

k states

Pl X2y, X(3.41]

m states

X4 X, X3 X4

P X109y, Xi3.41] = P[X (10| Ho| P[QH2]P[ X 3.4y | Ho]'

Factor of 4 variables Factor of 3 variables T Factor of 3 variables

Factor of 1 variable
Is this useful?
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Alternate Factorizations

* This factorization is not unique

e Standard Matrix Factorization trick: Add any invertible transformation

M = LR
M =LSS 'R

* There exists a different factorization that only depends on observed
variables!



An Alternate Factorization

* Consider P[X{l,Q}a X{34}]

* Let’s factorize it in a product of matrices over three observed variables
P[X{ 1,2} X.‘i]
P[X27 X{;{A}]

* Example:
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An Alternate Factorization

e We have:

P X121, X3| = P[ X121 | Ho | P|@QH | P[ X3 Ho]'
P[Xz /Y{;3.4}] — P/Y_)Iﬂz]fp@HQ]P[/Y{34}‘H2]T

* Product of green terms is: P[X{l,Q} ; X{3,4}]

* Product of read terms is: P[Xz, X;;]



An Alternate Factorization

PlX121, Xi34] = P[ X109y, X3]P[ X2, X3]7 " P[ X2, X3.4]

—

factor of 4 variables factor of 3 variables factor of 3 variables

* Factors are only function of observed variables: No EM needed!
* Some factors are no longer probability tables
* We call this the observable factorization
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Graphical Relationship

Pl X2, Xsay] = PlXq2, X3|P[ X2, X

] IP[XQv

1.4) |
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What does learning mean here?
P[X{12}~X{34}] - ’P[X{12}~X¥],P[X2 ] 1P[X2

* We learn only the tables over observed variables
* No need to learn H (No EM)

(3.4 ]
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Another Factorization (not unique)
’P[)({l.-,_)} : X{:;,4}] = P[/Y{l.s_)} : )(4]7? :)(1 " /Y4]_1,P[/Y1 . zY{:iA}]

e Some factors are no longer probability tables
* We call this the observable factorization
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Relationship to Original Factorization

P X121, Xigap] = P[Xp12)| Ho| P[OH: P [ X 3.4y Ha]

M L R
M = LR
M =LSS 'R

* What is the algebraic relationship between the original factorization
and the new factorization?
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Relationship to Original Factorization

* Consider: S = tP[X3‘H2]

P X1, Xi3.g] = Pl X123, X3]P[Xa. X3] 7' P[Xo, X3.4]

- LS - S'R

P X125 X3.43] = Pl X123 Ho) PQH: | P[ X 3,43 Ha]'

42



Alternate Factorization

P X125 Xizay] = Pl X125, Xs]P[Xa, Xa] ' P[ Xy, X(3,4]

factor of 4 variables factor of 3 variables factor of 3 variables

* We reduced the size of the factor by 1 (not very impressive?)
* We can recursively factorize many GMs
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Alternate Factorization

PlX121, X3.41] = P[X(1.2), X3]P[ X2, X3] ' P[Xo, X(3.4]

factor of 4 variables factor of 3 variables factor of 3 variables

* We reduced the size of the factor by 1 (not very impressive?)
* We can recursively factorize many GMs

* Every latent tree of V variables has such a factorization where:
 All factors are of size 3
 All factors are only functions of observed variables
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Training/Testing with Spectral Learning

* We have that:
PlX12y. Xzl = PlX 2y, Xs]P[X2, Xs] 7 P[X2, Xizg)

.

* In training we get the MLE of
- - —1
'P_\//,/J[A\{l.z}- 4\:&] fPMLE[XQa X3] rP;\II,I'J[X‘_)s X{:i.-l}]
* In test time we compute probability estimates

Popec[1, T2, 23, Ta] = Prre[za.2), Xs]Pure[Xo, Xs] ' Pure[ X2, zia.a)
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Generalizing to More Variables

e Consider an HMM with 5 observations. We have:

P[X12, X3as] = P[X 2. Xs]P[Xo, X3] ' P[X2, X3.45]

| /

reshape and decompose
recursively

/P[J\'{g.;;} ; ‘-\'{4;,}] — /P[A\'{‘)_:;} . ‘\'4]7?[4\'3. 4\74]—lfp[4\'3- 4\'{4.5}]
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Consistency

* Estimate joint distribution
* |t is consistent. We are simply using maximum likelihood estimation

rP,\//, 1;[‘/\'| ; z\"_): ‘\';;. ‘.\',] — fP[‘\'l ) ‘,\'2: ‘,\':;. "\'l] as number of samples

increases

* However, it is not very statistically efficient

47



Consistency

* A better estimate is to compute likelihood estimates of the factorization

P e[ X | Ha)Prrne|QH P e[ X 3.4 Ha]'
— P[Xl N Xzi X;;. X;]

* But this requires EM

48



Consistency

* In spectral learning, we estimate the alternate factorization

Prre[Xoy, Xa]lPure[Xe, Xa] " Pure[Xe, X34]
— fP[x\y| . 1\7.3 x\r{ ‘\'|]

* This is consistent and computationally tractable (we lose some
statistical efficiency due to the dependence on the inverse)

49



The Inverse Catch

» Before we had the clique problem: where does this appear in our
factorization?

e Utility of hidden variables: Make the model simpler
* How does this manifest in our factorization?

PlX(12p. Xp.y] = PlX(12), Xa]P[Xo, Xa] ' P[Xo, Xi3.4y]



The Inverse Catch

» Before we had the clique problem: where does this appear in our
factorization?

e Utility of hidden variables: Make the model simpler
* How does this manifest in our factorization?

Pl X9y, X3.41] = P[ X102y, X3]P[Xo, X3] 1P[ X, X3.4]

. p—

When does this exist?
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When does the inverse exist?

Pl Xo, X3] = P[Xo|Ho | P[@OH | P[ X3 Ho]™

* All the matrices on the right hand side must have full rank (and square).
* Full rank: All rows and columns are linearly independent

 This is a requirement of spectral learning

* |s this interesting?



When does the inverse exist?

Pl Xy, X3| = P[Xo|Ho|P[OH, | P[X3|Ha |

e All the matrices on the right hand side must have full rank (and square).
* Full rank: All rows and columns are linearly independent
* This is a requirement of spectral learning

* |s this interesting? E.g.: This means that the hidden states in H2 have to be
the same as X2

* We benefit only if k < m (we get a reduction in representation complexity)
* What about k > m?



When does the inverse exist?

Pl Xy, X3| = P[Xo|Ho|P[OH, | P[X3|Ha |

e All the matrices on the right hand side must have full rank (and square).
* Full rank: All rows and columns are linearly independent
* This is a requirement of spectral learning

* |s this interesting? E.g.: This means that the hidden states in H2 have to be
the same as X2

* We benefit only if k < m (we get a reduction in representation complexity)
 What about k > m? Feature extraction: think of deep learning



When m > k

* The inverse cannot exist, but we can fix this: project onto a lower
dimensional space

P[X(12). Xs]V(U P[Xs, X5]V) U TP[Xa, Xi3.4]

* U, V are the top left/right k singular vectors of P[X2v X:s]
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When k> m

* The inverse does exist. But it no longer satisfies that:

P[Xa, Xs] ™" = (P[Xs|Ha] )™ P[@Ha] ™' P[Xo| Hy]~

* More difficult to fix and intuitively corresponds to how the problem
becomes intractable if k >> m
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When k> m

* The inverse does exist. But it no longer satisfies that:

P[Xa, Xs] ™" = (P[Xs|Ha] )™ P[@Ha] ™' P[Xo| Hy]~

* More difficult to fix and intuitively corresponds to how the problem
becomes intractable if k >>m

* Let’s ignore it for now ©



Spectral Learning in Practice

* We will use marginals of pairs/triples of variables to construct the full
marginal among the observed variables.

* Only works when k<m

* However, we need to capture longer range dependencies
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Use of Long-Range Features

Construct feature Construct feature
vector of left side vector of right side

P Pr
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Spectral Learning with Features

,P[XQ,Xg] = ":[52 ®53] P = “:[525;—]

Rewrite using indicator features 0



Spectral Learning with Features

P[X27 XJ] —

":[(SQ X 53] L= ":[525;—]

/

Use more complex feature instead:

b ® dr]

Pl X125, Xi3.41] = E|012, 0304]

= *1[5]®Q.¢[{]V(UI

i @ PrlV) U'Plpr. Xisa]



Experimentally

* Many results show that spectral methods achieve comparable results to
EM but are 10-100x faster

Runtime vs. Sample Size Error vs. Sample Size
10000f T S e ;
o’ g
» 1|
—_ Online EM W )
% 1000\ .o . Online EM
: - . O 05}
E R \‘ “ t EM
- [ o’ Y o (11 04' Yo ‘ \
F . o LI
£ L EM 0.3 A SLL TS
oz =
100; Spectral 0.2t Spectral\.\
010205 1 2 5 10 20 50 75 100 010205 1 2 5 10 20 50 75 100

Training Samples Training Samples
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Summary

EM Spectral
e Aims to find MLE in a * Does not aim to find
statistically efficient manner MLE/less statistically
efficient

e Can get stuck in local-optima

e Limited theoretical * Local-optima-free

guarantees * Provably consistent

* Slow * Fast

* Easy to derive for new * Challenging to derive for
models new models (unknown if it

generalizes to arbitrary loopy
models)



