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What	have	we	seen	so	far
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• Representations
• Directed	GMs
• Undirected	GMs

• Exact	Inference
• Variable	Elimination
• Sum-Product
• Junction	trees

• Learning
• Parameter	learning
• Structure	learning
• Missing	values

• Approximate	Inference
• Variational methods
• Sampling



Next	classes	(6	till	Thanksgiving	+	4	
afterwards)
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• Advanced	Graphical	Models
• Spectral	methods	for	GMs
• Markov-logic	Networks

• Deep	learning	and	GMs
• Comparison-Overview
• DL	models	1	(VAEs/GANs/domain	
knowledge	in	DNNs)
• DL	models	2	(CNNs/RNNs/Attention)

• Scalable	Systems	
• Distributed	Algorithms	for	ML
• Distributed	Systems	for	ML

• Applications
• Knowledge	Base	
Construction
• Data	Cleaning

• Project	presentations



Project	Deliverables
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• Proposal	due:	Nov	8
• Mid-report	due:	Nov	27
• Proposal	presentations:	Dec	11



CS839:	
Probabilistic	Graphical	Models

Lecture	16:	Spectral	Algorithms	for	GMs
Theo	Rekatsinas
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Latent	Variable	Models
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Latent	Parameters	(EM)
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• Latent	variables	are	not	observed	in	the	data:	use	EM	to	learn	
parameters
• Slow	and	local	minima



Spectral	Learning
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• Different	paradigm	of	learning	in	the	presence	of	latent	variables
• Based	on	linear	algebra

• Theoretically
• Provably	consistent
• Can	offer	deep	insights	into	identifiability

• Practically
• Local	minima	free
• Faster	than	EM:	in	some	cases	10-100x	speed-up



References
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Focus	on	Predictions
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• In	many	applications	that	use	latent	variable	models,	the	end	task	is	
not	to	recover	the	latent	states	but	use	the	model	for	prediction	
among	the	observed	variables

• Example:	predict	the	future	given	the	past



Focus	on	Predictions

11

• Only	use	quantities	related	to	the	observed	variables:

• Do	not	care	about	latent	variables	explicitly

• Do	we	still	need	EM	to	learn	the	parameters?



Focus	on	Predictions
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• Why	don’t	we	just	integrate	them	out?



Focus	on	Predictions
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• Why	don’t	we	just	integrate	them	out?



Marginal	does	not	factorize
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• Does	not	factorize	due	to	the	outer	sum



HMM	and	cliques
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• Is	an	HMM	different	from	a	clique?
• It	depends	on	the	number	of	latent	states!
• Example:



What	if	H	has	only	one	state?
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What	if	H	has	only	one	state?
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• The	observed	variables	are	independent



What	if	H	has	only	many	states?
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• If	X1,	X2,	X3	have	m	states	each	and	H	has	m3



What	if	H	has	only	many	states?
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• If	X1,	X2,	X3	have	m	states	each	and	H	has	m3

• The	model	can be	exactly	equivalent	to	a	clique



What	about	cases	between	1	and	m3 ?

20

• Under	existing	methods,	latent	models	require	EM	regardless	of	the	
number	of	hidden	states

• Is	there	a	formulation	of	latent	variable	models	where	the	difficulty	of	
learning	is	a	function	of	the	number	of	latent	states?

• We	will	answer	this	by	adopting	a	spectral	view.



Sum	Rule	(Matrix	Form)
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• Sum	Rule

• Equivalent	view	using	Matrix	Algebra



Chain	Rule	(Matrix	Form)
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• Sum	Rule

• Equivalent	view	using	Matrix	Algebra



GMs:	The	linear	algebra	view
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• Is	there	something	we	can	say	about	this	matrix?



Independence:	The	linear	algebra	view
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• What	if	A	and	B	are	independent?



Independence:	The	linear	algebra	view
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• What	can	we	say	about	this	matrix?



Independence:	The	linear	algebra	view
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• What	can	we	say	about	this	matrix?	It	is	rank	one



Independence	and	Rank
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• What	about	rank	in	between	1	and	m?



Low	Rank	Structure

28

• A	and	B	are	not	marginally	independent	(conditionally	independent	
given	X)

• If	X	has	k	states	(while	A	and	B	have	m	states):



Low	Rank	Structure
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Spectral	View
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• Latent	variable	models	encode	low	rank	dependencies	among	variables	
(both	marginal	and	conditional)

• Use	tools	from	linear	algebra	to	exploit	this	structure:
• Rank
• Eigenvalues
• SVD
• Tensors



Example:	HMM
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Low	Rank	Matrices	Factorize
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We	already	know	a	factorization	(introduced	by	the	graph	structure)



Low	Rank	Matrices	Factorize
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Is	this	useful?



Alternate	Factorizations
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• This	factorization	is	not	unique

• Standard	Matrix	Factorization	trick:	Add	any	invertible	transformation

• There	exists	a	different	factorization	that	only	depends	on	observed	
variables!



An	Alternate	Factorization
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• Consider

• Let’s	factorize	it	in	a	product	of	matrices	over	three	observed	variables

• Example:



An	Alternate	Factorization
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• We	have:

• Product	of	green	terms	is:

• Product	of	read	terms	is:



An	Alternate	Factorization
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• Factors	are	only	function	of	observed	variables:	No	EM	needed!
• Some	factors	are	no	longer	probability	tables
• We	call	this	the	observable	factorization



Graphical	Relationship
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What	does	learning	mean	here?
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• We	learn	only	the	tables	over	observed	variables
• No	need	to	learn	H	(No	EM)



Another	Factorization	(not	unique)
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• Some	factors	are	no	longer	probability	tables
• We	call	this	the	observable	factorization



Relationship	to	Original	Factorization
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• What	is	the	algebraic	relationship between	the	original	factorization	
and	the	new	factorization?



Relationship	to	Original	Factorization
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• Consider:



Alternate	Factorization
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• We	reduced	the	size	of	the	factor	by	1	(not	very	impressive?)
• We	can	recursively	factorize	many	GMs	



Alternate	Factorization
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• We	reduced	the	size	of	the	factor	by	1	(not	very	impressive?)
• We	can	recursively	factorize	many	GMs	

• Every	latent	tree	of	V	variables	has	such	a	factorization	where:	
• All	factors	are	of	size	3
• All	factors	are	only	functions	of	observed	variables



Training/Testing	with	Spectral	Learning
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• We	have	that:

• In	training	we	get	the	MLE	of

• In	test	time	we	compute	probability	estimates		



Generalizing	to	More	Variables
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• Consider	an	HMM	with	5	observations.	We	have:



Consistency
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• Estimate	joint	distribution
• It	is	consistent.	We	are	simply	using	maximum	likelihood	estimation

• However,	it	is	not	very	statistically	efficient



Consistency
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• A	better	estimate	is	to	compute	likelihood	estimates	of	the	factorization

• But	this	requires	EM



Consistency
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• In	spectral	learning,	we	estimate	the	alternate	factorization

• This	is	consistent	and	computationally	tractable	(we	lose	some	
statistical	efficiency	due	to	the	dependence	on	the	inverse)



The	Inverse	Catch
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• Before	we	had	the	clique	problem:	where	does	this	appear	in	our	
factorization?

• Utility	of	hidden	variables:	Make	the	model	simpler
• How	does	this	manifest	in	our	factorization?



The	Inverse	Catch
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• Before	we	had	the	clique	problem:	where	does	this	appear	in	our	
factorization?

• Utility	of	hidden	variables:	Make	the	model	simpler
• How	does	this	manifest	in	our	factorization?

When	does	this	exist?



When	does	the	inverse	exist?
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• All	the	matrices	on	the	right	hand	side	must	have	full	rank	(and	square).
• Full	rank:	All	rows	and	columns	are	linearly	independent	
• This	is	a	requirement	of	spectral	learning
• Is	this	interesting?		



When	does	the	inverse	exist?
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• All	the	matrices	on	the	right	hand	side	must	have	full	rank	(and	square).
• Full	rank:	All	rows	and	columns	are	linearly	independent	
• This	is	a	requirement	of	spectral	learning
• Is	this	interesting?	E.g.:	This	means	that	the	hidden	states	in	H2	have	to	be	
the	same	as	X2

• We	benefit	only	if	k	<	m	(we	get	a	reduction	in	representation	complexity)
• What	about	k	>	m?



When	does	the	inverse	exist?

54

• All	the	matrices	on	the	right	hand	side	must	have	full	rank	(and	square).
• Full	rank:	All	rows	and	columns	are	linearly	independent	
• This	is	a	requirement	of	spectral	learning
• Is	this	interesting?	E.g.:	This	means	that	the	hidden	states	in	H2	have	to	be	
the	same	as	X2

• We	benefit	only	if	k	<	m	(we	get	a	reduction	in	representation	complexity)
• What	about	k	>	m?	Feature	extraction:	think	of	deep	learning



When	m	>	k
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• The	inverse	cannot	exist,	but	we	can	fix	this:	project	onto	a	lower	
dimensional	space

• U,	V	are	the	top	left/right	k	singular	vectors	of	



When	k	>	m
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• The	inverse	does	exist. But	it	no	longer	satisfies	that:

• More	difficult	to	fix	and	intuitively	corresponds	to	how	the	problem	
becomes	intractable	if	k	>>	m



When	k	>	m
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• The	inverse	does	exist. But	it	no	longer	satisfies	that:

• More	difficult	to	fix	and	intuitively	corresponds	to	how	the	problem	
becomes	intractable		if	k	>>	m
• Let’s	ignore	it	for	now	J



Spectral	Learning	in	Practice
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• We	will	use	marginals of	pairs/triples	of	variables	to	construct	the	full	
marginal	among	the	observed	variables.

• Only	works	when	k	<	m

• However,	we	need	to	capture	longer	range	dependencies



Use	of	Long-Range	Features
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Spectral	Learning	with	Features
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Rewrite	using	indicator	features	δ



Spectral	Learning	with	Features
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Experimentally
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• Many	results	show	that	spectral	methods	achieve	comparable	results	to	
EM	but	are	10-100x	faster



Summary
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EM
• Aims	to	find	MLE	in	a	
statistically	efficient	manner
• Can	get	stuck	in	local-optima
• Limited	theoretical	
guarantees
• Slow
• Easy	to	derive	for	new	
models

Spectral
• Does	not	aim	to	find	
MLE/less	statistically	
efficient
• Local-optima-free
• Provably	consistent
• Fast
• Challenging	to	derive	for	
new	models	(unknown	if	it	
generalizes	to	arbitrary	loopy	
models)


