Approaches to inference

• Exact inference algorithms
 • The elimination algorithm
 • Message-passing algorithm (sum-product, belief propagation)
 • Junction tree algorithm

• Approximate inference techniques
 • Variational algorithms
 • Loopy belief propagation
 • Mean field approximation
 • Stochastic simulation / sampling methods
 • Markov chain Monte Carlo methods
How to represent a joint distribution?

• Closed form representation

\[
(x_1, \ldots, x_p)^T \sim \frac{1}{(2\pi)^{p/2}|\Sigma|^{1/2}} \exp \left(-\frac{1}{2} x - \mu \right)^T \Sigma^{-1} (x - \mu)
\]

\[
E_p(f(x)) = \int f(x)p(x)dx
\]

• Sample-based representation

Collect samples \(X^{(m)} \sim P(x) \) if we draw a lot of samples we can use the law of large numbers to get that \(E_p(f(x)) = \sum_m f(X^{(m)})/|m| \)
Monte Carlo Methods

• Draw random samples from the desired distribution
• Yield a stochastic representation of a complex distribution
 • marginals and other expectations can be approximated using sample-based averages
 • $E_p(f(x)) = \Sigma_{m} f(X^{(m)})/|m|$
• Asymptotically exact and easy to apply to arbitrary models
• Challenges:
 • how to draw samples from a given dist. (not all distributions can be trivially sampled)?
 • how to make better use of the samples (not all sample are useful, or equally useful, see an example later)?
 • how to know we've sampled enough?
Monte Carlo Methods

• Direct Sampling
 • We have seen it.
 • Very difficult to populate a high-dimensional state space

• Rejection Sampling
 • Create samples like direct sampling, only count samples which is consistent with given evidences.

• Likelihood weighting, ...
 • Sample variables and calculate evidence weight. Only create the samples which support the evidences.

• Markov chain Monte Carlo (MCMC)
 • Metropolis-Hasting
 • Gibbs
Rejection sampling

• Suppose we wish to sample from dist. \(\Pi(X) = \Pi'(X)/Z. \)
 - \(\Pi(X) \) is difficult to sample, but \(\Pi'(X) \) is easy to evaluate
 - Sample from a simpler distribution \(Q(X) \)
 - Rejection sampling \(x^* \sim Q(X), \) accept \(x^* \) w.p. \(\Pi'(x^*)/kQ(x^*) \)

\[
p(x) = \frac{[\Pi'(x)/kQ(x)]Q(x)}{\int[\Pi'(x)/kQ(x)]Q(x)dx} \\
= \frac{\Pi'(x)}{\int \Pi'(x)dx} = \Pi(x)
\]

• Correctness:

• Pitfall: We gained a sample but what did we pay?
Unnormalized Importance Sampling

• Suppose sampling from $P(\cdot)$ is hard.
• Suppose we can sample from a "simpler" proposal distribution $Q(\cdot)$ instead.
• If Q dominates P (i.e., $Q(x) > 0$ whenever $P(x) > 0$), we can sample from Q and reweight:

\[
\langle f(X) \rangle = \int f(x) P(x) dx \\
= \int f(x) \frac{P(x)}{Q(x)} Q(x) dx \\
\approx \frac{1}{M} \sum_m f(x^m) \frac{P(x^m)}{Q(x^m)} \quad \text{where } x^m \sim Q(X) \\
= \frac{1}{M} \sum_m f(x^m) w^m
\]
Normalized importance sampling

• Suppose we can only evaluate $P'(x) = a P(x)$

Let $r(X) = \frac{P'(x)}{Q(x)} \Rightarrow \langle r(X) \rangle_Q = \int \frac{P'(x)}{Q(x)} Q(x) \, dx = \int P'(x) \, dx = \alpha$

\[
\langle f(X) \rangle_p = \int f(x) P(x) \, dx = \frac{1}{\alpha} \int f(x) \frac{P'(x)}{Q(x)} Q(x) \, dx
\]
\[
= \frac{\int f(x) r(x) Q(x) \, dx}{\int r(x) Q(x) \, dx}
\]
\[
\approx \frac{\sum_m f(x^m) r^m}{\sum_m r^m} \quad \text{where } x^m \sim Q(X)
\]
\[
= \sum_m f(x^m) w^m \quad \text{where } w^m = \frac{r^m}{\sum_m r^m}
\]
Weighted resampling

• Problem of importance sampling: performance depends on how well Q matches P
 • If $P(x)f(x)$ is strongly varying and has a significant proportion of its mass concentrated in a small region, r_m will be dominated by a few samples

• Solution: use a heavy tail Q and weighted resampling

$$w^m = \frac{P(x^m)/Q(x^m)}{\sum_l P(x^l)/Q(x^l)} = \frac{r^m}{\sum_m r^m}$$
Limitations of Monte Carlo

• Direct sampling
 • Hard to get rare events in high-dimensional spaces
 • Infeasible for MRFs unless we know the normalizer Z

• Rejection sampling, Importance sampling
 • We need a good proposal $Q(x)$ that is not very different than $P(x)$

• How about we use an adaptive proposal?
Markov Chain Monte Carlo

- MCMC algorithms feature adaptive proposals
 - Instead of $Q(x')$ use $Q(x'|x)$ where x' is the new state being sampled and x is the previous sample
 - As x changes $Q(x'|x)$ can also change
Metropolis-Hastings

• Draw a sample x' from $Q(x'|x)$ where x is the previous sample
• The new sample x' is accepted or rejected with some probability $A(x'|x)$

 • Acceptance prob: $A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$

• $A(x'|x)$ is like a ration of importance sampling weights
 • $P(x')/Q(x'|x)$ is the importance weight for x', $P(x)/Q(x|x')$ is the importance weight for x
 • We divide the importance weight for x' by that of x
 • Notice that we only need to compute $P(x')/P(x)$ rather than $P(x')$ or $P(x)$

• $A(x'|x)$ ensures that after sufficiently many draws, our samples come from the true distribution.
Metropolis-Hastings

1. Initialize starting state $x^{(0)}$, set $t = 0$

2. **Burn-in:** while samples have “not converged”
 - $x = x^{(t)}$
 - $t = t + 1,$
 - sample $x^* \sim Q(x^*|x)$ \hspace{1mm} // draw from proposal
 - sample $u \sim \text{Uniform}(0,1)$ \hspace{1mm} // draw acceptance threshold
 - if $u < A(x^*|x) = \min\left(1, \frac{P(x^*)Q(x| x^*)}{P(x)Q(x^*|x)}\right)$
 - $x^{(t)} = x^*$ \hspace{1mm} // transition
 - else
 - $x^{(t)} = x$ \hspace{1mm} // stay in current state

- **Take samples from $P(x) =$** \hspace{1mm} : Reset $t=0$, for $t = 1:N$
 - $x(t+1) \xleftarrow{} \text{Draw sample } (x(t))$
Example of MH

• Let $Q(x' \mid x)$ be a Gaussian centered on x
• We are trying to sample from a bimodal $P(x)$
Example of MH

- Let $Q(x'|x)$ be a Gaussian centered on x
- We are trying to sample from a bimodal $P(x)$

$$A(x'|x) = \min \left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)} \right)$$

Initialize $x^{(0)}$
Draw, accept x^1
Example of MH

- Let $Q(x' | x)$ be a Gaussian centered on x
- We are trying to sample from a bimodal $P(x)$

$$A(x' | x) = \min \left(1, \frac{P(x')Q(x | x')}{P(x)Q(x' | x)} \right)$$
Example of MH

• Let $Q(x' | x)$ be a Gaussian centered on x
• We are trying to sample from a bimodal $P(x)$
Example of MH

• Let $Q(x' | x)$ be a Gaussian centered on x
• We are trying to sample from a bimodal $P(x)$

\[
A(x' | x) = \min \left(1, \frac{P(x')Q(x | x')}{P(x)Q(x' | x)} \right)
\]
Example of MH

• Let $Q(x'|x)$ be a Gaussian centered on x
• We are trying to sample from a bimodal $P(x)$
Example of MH

- Let $Q(x'|x)$ be a Gaussian centered on x
- We are trying to sample from a bimodal $P(x)$
Example of MH

• Let $Q(x'|x)$ be a Gaussian centered on x
• We are trying to sample from a bimodal $P(x)$
Some theoretical aspects of MCMC

• The MH algorithm has a burn-in period
 • Initial samples are not truly from P

• Why are the MH samples guaranteed to be from P(x)?
 • The proposal Q(x’|x) keeps changing with the value of x; how do we know the samples will eventually come from P(x)?

• Why Markov Chain?
Markov Chains

• A Markov Chain is a sequence of random variables x_1, x_2, \ldots, x_N with the Markov Property

$$P(x^{(n)} = x | x^{(1)}, \ldots, x^{(n-1)}) = P(x^{(n)} = x | x^{(n-1)})$$

• The right hand side is the transition kernel. Next state depends only on preceding state

• Let’s assume the kernel is fixed with time.
MC Concepts

- Probability distributions over states: $\pi^{(t)}(x)$ is a distribution over the state of the system x, at time t
 - When dealing with MCs, we don't think of the system as being in one state, but as having a distribution over states
 - For graphical models, remember that x represents all variables
- Transitions: recall that states transition from $x^{(t)}$ to $x^{(t+1)}$ according to the transition kernel $T(x' \mid x)$. We can also transition entire distributions:
 $$\pi^{(t+1)}(x') = \sum_x \pi^{(t)}(x) T(x' \mid x)$$
 - At time t, state x has probability mass $\pi^{(t)}(x)$. The transition probability redistributes this mass to other states x'.
- Stationary distributions: $\pi(x)$ is stationary if it does not change under the transition kernel:
 $$\pi(x') = \sum_x \pi(x) T(x' \mid x) \quad \text{for all } x'$$
MC Concepts

• Stationary distributions are of great importance in MCMC. Some notions
 • **Irreducible**: an MC is irreducible if you can get from any state x to any other state x' with probability $x > 0$ in a finite number of steps
 • **Aperiodic**: an MC is aperiodic if you can return to any state x at any time
 • **Ergodic (or regular)**: an MC is ergodic if it is irreducible and aperiodic

• Ergodicity is important: it implies you can reach the stationary distribution no matter the initial distribution.
MC Concepts

- Reversible (detailed balance): an MC is reversible if there exists a distribution $\pi(x)$ such that the detailed balance condition holds

\[
\pi(x')T(x \mid x') = \pi(x)T(x' \mid x)
\]

- Reversible MCs always have a stationary distribution

\[
\pi(x')T(x \mid x') = \pi(x)T(x' \mid x) \\
\sum_x \pi(x')T(x \mid x') = \sum_x \pi(x)T(x' \mid x) \\
\pi(x') = \sum_x \pi(x)T(x' \mid x) \\
\text{The last line is the definition of a stationary distribution!}
\]
Why does MH work?

• We draw a sample x' according to $Q(x'|x)$ and then accept/reject according to $A(x'|x)$. Hence the transition kernel is:

$$T(x'|x) = Q(x'|x)A(x'|x)$$

• We can prove that MH satisfies detailed balance.

Recall that

$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

Notice this implies the following:

If $A(x'|x) \leq 1$ then $\frac{P(x)Q(x'|x)}{P(x')Q(x|x')} \geq 1$ and thus $A(x|x') = 1$
Why does MH work?

• Now suppose \(A(x'|x) < 1 \) and \(A(x|x') = 1 \). We have

\[
A(x'|x) = \frac{P(x')Q(x'|x')}{P(x)Q(x|x')}
\]

\[
P(x)Q(x'|x)A(x'|x) = P(x')Q(x|x')
\]

\[
P(x)Q(x'|x)A(x'|x) = P(x')Q(x|x')A(x|x')
\]

\[
P(x)T(x'|x) = P(x')T(x|x')
\]

• This is the detailed balance condition:
 • The MH algorithm leads to a stationary distribution \(P(x) \)
 • We defined \(P(x) \) to be the true distribution of \(x \)
 • Thus, MH eventually converges to the true distribution
Gibbs Sampling

• Gibbs Sampling is an MCMC algorithm that samples each random variable of a graphical model, one at a time

• GS is fairly easy to derive for many graphical models

• GS has reasonable computation and memory requirements (because we sample one r.v. at a time)
Gibbs Sampling Algorithm

1. Suppose the graphical model contains variables x_1, \ldots, x_n
2. Initialize starting values for x_1, \ldots, x_n
3. Do until convergence:
 1. Pick an ordering of the n variables (can be fixed or random)
 2. For each variable x_i in order:
 1. Sample x from $P(x_i | x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)$, i.e. the conditional distribution of x_i given the current values of all other variables
 2. Update $x_i \leftarrow x$
Gibbs Sampling Example

Variables Factors

- **If we set v₁ to True, we are rewarded by 5 points!**
 \[f₁(a) = \begin{cases} 5, & a = \text{True} \\ 0, & \text{otherwise} \end{cases} \]

- **If we set v₂ and v₃ to the same, we get 10 more points!**
 \[f₂(a,b) = \begin{cases} 10, & a = b \\ 0, & \text{otherwise} \end{cases} \]

Probability

\[\infty \]
\[\exp\{\text{total points}\} \]

Gibbs Sampling: A Descriptive Tutorial

1. Initialize variables with a random assignment. **T** **F**
2. For each random variable:
 2.1 Calculate the points we earn for each assignment:
 - e.g., \(v₁ = \text{T} \) ⇒ 0 points
 - e.g., \(v₁ = \text{F} \) ⇒ 10 points
 2.2 Randomly pick one assignment:
 - e.g., \(P(v₂ = \text{T}) = \frac{\exp(0)}{\exp(0) + \exp(10)} \)
 - \(P(v₂ = \text{F}) = \frac{\exp(10)}{\exp(0) + \exp(10)} \)
3. Generate one sample. Goto 2 if we want more samples.

Billions!
Parallel Gibbs Sampling

- Run Gibbs independently on full copies of the same model
- Fewer iterations per copy
- More samples means more accurate marginals

Complete Model Copies

Run sequential Gibbs

Data to materialize factor graph

Variable Tally
Parallel Gibbs Sampling

- Compute a k-coloring of the factor graph
- Sample all variables with same color in parallel
- Load balancing is a key challenge
Summary

• Sampling can be easy to implement but we can get poor quality samples
 • We need a good proposal distribution

• Markov Chain Monte Carlo methods use adaptive proposals $Q(x'|x)$ to sample from the true distribution $P(x)$

• Metropolis-Hastings allows you to specify any proposal $Q(x'|x)$

• Gibbs sampling sets the proposal $Q(x'|x)$ to the conditional $P(x'|x)$
 • Acceptance rate is always 1 but this means slow exploration

• Burn-in is an art!